
计算概论A—实验班

函数式程序设计

Functional Programming

胡振江，张 伟

北京⼤学 计算机学院

2022年09～12⽉

第12章：Monads and More

Adapted from Graham’s Lecture slides

主要知识点：
Functor、Applicative, Monad

两种提升代码抽象层次的⽅式

 Level 1: Polymorphic Functions (over types)

 Level 2: Generic Functions (over type constructors)

 length1 :: List a -> Int

 length2 :: t a -> Int

Functor / 函⼦

计算的抽象
 inc :: [Int] -> [Int]

 inc [] = []

 inc (n:ns) = n+1 : inc ns

 sqr :: [Int] -> [Int]

 sqr [] = []

 sqr (n:ns) = n^2 : sqr ns

 map :: (a -> b) -> [a] -> [b]

 map f [] = []

 map f (x:xs) = f x : map f xs

抽象

inc = map (+1) sqr = map (^1)

Functor
 -- Exported by Prelude

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 (<$) :: b -> f a -> f b

 (<$) = fmap . const

 -- Exported by Prelude

 const :: b -> a -> b

 const x _ = x

(fmap . _const) b fa
 fmap__ (const b) fa

Functor
 -- Exported by Prelude

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 (<$) :: a -> f b -> f a

 (<$) = fmap . const

 -- Exported by Prelude

 instance Functor [] where

 -- fmap :: (a -> b) -> [a] -> [b]

 fmap = map

 ghci> fmap (+1) [1,2,3]

 [2,3,4]

 ghci> fmap (^2) [1,2,3]

 [1,4,9]

 data Maybe a = Nothing | Just a

 instance Functor Maybe where

 -- fmap :: (a -> b) -> Maybe a -> Maybe b

 fmap _ Nothing = Nothing

 fmap g (Just x) = Just (g x)

 ghci> fmap (+1) (Just 3)

 Just 4

 ghci> fmap (+1) Nothing

 Nothing

 ghci> fmap not (Just False)

 Just True

 data Tree a = Leaf a | Node (Tree a) (Tree a)

 deriving (Show)

 instance Functor Tree where

 -- fmap :: (a -> b) -> Tree a -> Tree b

 fmap g (Leaf x) = Leaf $ g x

 fmap g (Node l r) = Node (fmap g l) (fmap g r)

 ghci> fmap length (Leaf "abc")

 Leaf 3

 ghci> fmap even $ Node (Leaf 1) (Leaf 2)

 Node (Leaf False) (Leaf True)

 instance Functor IO where

 -- fmap :: (a -> b) -> IO a -> IO b

 fmap g mx = do x <- mx

 return $ g x

 ghci> fmap show $ return True

 "True"

Generic Function Definition

 inc :: Functor f => f Int -> f Int

 inc = fmap (+1)

 ghci> inc $ Just 1

 Just 2

 ghci> inc [1,2,3,4,5]

 [2,3,4,5,6]

 ghci> inc $ Node (Leaf 1) (Leaf 2)

 Node (Leaf 2) (Leaf 3)

Functor Laws

fmap id = id_______

fmap (f . g) = fmap f . fmap g

✤For any parameterized type in Haskell, there is at most
one function fmap that satisfies the required laws.
‣ That is, if it is possible to make a given parameterized type

into a functor, there is only one way to achieve this.
‣ Hence, the instances that we defined for lists, Maybe, Tree

and IO were all uniquely determined.

①

②

<$> : An infix synonym for fmap
 -- Exported by Prelude

 (<$>) :: Functor f => (a -> b) -> f a -> f b

 (<$>) = fmap

Applicative

Applicative Functor

如何定义⼀个⼀般性的fmap

 fmap1 :: (a -> b) -> f a -> f b

 fmap2 :: (a -> b -> c) -> f a -> f b -> fc

 fmap3 :: (a -> b -> c -> d) -> f a -> f b -> fc -> f d

 fmap0 :: a -> f a

两个基本函数

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

 fmap1 :: (a -> b) -> f a -> f b

 fmap1 g x = pure g <*> x

 fmap1 g x = fmap g x = g <$> x

 fmap2 :: (a -> b -> c) -> f a -> f b -> fc

 fmap2 g x y = pure g <*> x <*> y = g <$> x <*> y

 fmap3 :: (a -> b -> c -> d) -> f a -> f b -> fc -> f d

 fmap3 g x y z = pure g <*> x <*> y <*> z = g <$> x <*> y <*> z

 fmap0 :: a -> f a

 fmap0 = pure

 pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

Applicative Functor

Applicative Functor: ⼀个简化版本
 class Functor f => Applicative f where

 -- Lift a value

 pure :: a -> f a

 -- Sequential application.

 (<*>) :: f (a -> b) -> f a -> f b

Applicative Functor: ⼀个简化版本
 class Functor f => Applicative f where

 -- Lift a value

 pure :: a -> f a

 -- Sequential application.

 (<*>) :: f (a -> b) -> f a -> f b

声明 Maybe为Applicative的⼀个实例
 instance Applicative Maybe where

 —- pure :: a -> Maybe a

 pure = Just

 -- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

 Nothing <*> _ = Nothing

 (Just g) <*> mx = g <$> mx

Applicative Functor: ⼀个简化版本
 class Functor f => Applicative f where

 -- Lift a value

 pure :: a -> f a

 -- Sequential application.

 (<*>) :: f (a -> b) -> f a -> f b

声明 Maybe为Applicative的⼀个实例
 instance Applicative Maybe where

 —- pure :: a -> Maybe a

 pure = Just

 -- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

 Nothing <*> _ = Nothing

 (Just g) <*> mx = g <$> mx

 ghci> pure (+1) <*> Just 1

 Just 2

 ghci> pure (+) <*> Just 1 <*> Just 2

 Just 3

 ghci> pure (+) <*> Nothing <*> Just 2

 Nothing

 ghci> Nothing <*> Just 1

 Nothing

声明 [] 为Applicative的⼀个实例
 instance Applicative [] where

 -- pure :: a -> [a]

 pure x = [x]

 -- (<*>) :: [a -> b] -> [a] -> [b]

 gs <*> xs = [g x | g <- gs, x <- xs]

 ghci> pure (+1) <*> [1,2,3]

 [2,3,4]

 ghci> pure (+) <*> [1] <*> [2]

 [3]

 ghci> pure (*) <*> [1,2] <*> [3,4]

 [3,4,6,8]

声明 IO 为Applicative的⼀个实例
 instance Applicative IO where

 -- pure :: a -> IO a

 pure = return

 -- (<*>) :: IO (a -> b) -> IO a -> IO b

 mg <*> mx = do {g <- mg; x <- mx; return (g x)}

 getChars :: Int -> IO String

 getChars 0 = return []

 getChars n = pure (:) <*> getChar <*> getChars (n-1)

Generic Function Definition
 sequenceA :: Applicative f => [f a] -> f [a]

 sequenceA [] = pure []

 sequenceA (x:xs) = pure (:) <*> x <*> sequenceA xs

 ghci> sequenceA [Just 1, Just 2, Just 3]

 Just [1,2,3]

 ghci> sequenceA [Just 1, Nothing, Just 3]

 Nothing

 ghci> sequenceA [[1,2,3], [4,5,6], [7,8,9]]

 [[1,4,7],[1,4,8],[1,4,9],[1,5,7],[1,5,8],[1,5,9],[1,6,7],[1,6,8],[1,6,9],

 [2,4,7],[2,4,8],[2,4,9],[2,5,7],[2,5,8],[2,5,9],[2,6,7],[2,6,8],[2,6,9],

 [3,4,7],[3,4,8],[3,4,9],[3,5,7],[3,5,8],[3,5,9],[3,6,7],[3,6,8],[3,6,9]]

Applicative Laws

 pure id <*> x = x

 pure (g x) = pure g <*> pure x

 x <*> pure y = pure (\g -> g y) <*> x

 x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

①

②

③

④

Applicative Laws: 类型分析

 pure id <*> x = x

f aa -> a

 pure (g x) = pure g <*> pure x

aa -> bf b

Applicative Laws: 类型分析
 x <*> pure y = pure (\g -> g y) <*> x

 x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

af (a -> b) f ((a -> b) -> b)

Applicative Laws: 类型分析
 x <*> pure y = pure (\g -> g y) <*> x

 x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

af (a -> b) f ((a -> b) -> b)

f af (a -> b)

f (b -> c) f (a -> c)

Monad

⼀个⼩问题：异常处理

 data Expr = Val Int | Div Expr Expr

 eval :: Expr -> Int

 eval (Val n) = n

 eval (Div x y) = eval x `div` eval y

 ghci> eval $ Div (Val 1) (Val 0)

 *** Exception: divide by zero

解决⽅法1
 safediv :: Int -> Int -> Maybe Int

 safediv _ 0 = Nothing

 safediv n m = Just (n `div` m)

 eval :: Expr -> Maybe Int

 eval (Val n) = Just n

 eval (Div x y) = case eval x of

 Nothing -> Nothing

 Just n -> case eval y of

 Nothing -> Nothing

 Just m -> safediv n m

稍显繁杂

解决⽅法2
 safediv :: Int -> Int -> Maybe Int

 safediv _ 0 = Nothing

 safediv n m = Just (n `div` m)

 eval :: Expr -> Maybe Int

 eval (Val n) = pure n

 eval (Div x y) = pure safediv <*> eval x <*> eval y

type: Maybe (Maybe Int)类型错误

解决⽅法2
 safediv :: Int -> Int -> Maybe Int

 safediv _ 0 = Nothing

 safediv n m = Just (n `div` m)

 eval :: Expr -> Maybe Int

 eval (Val n) = pure n

 eval (Div x y) = case pure safediv <*> eval x <*> eval y of

 Just r -> r

 Nothing -> Nothing

还是不够简洁

Maybe (Maybe Int)

解决⽅法3：引⼊⼀个新的操作 bind
 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= f = case mx of

 Nothing -> Nothing

 Just x -> f x

 eval :: Expr -> Maybe Int

 eval (Val n) = Just n

 eval (Div x y) = eval x >>= (\n -> (eval y >>= (\m -> safediv n m)))

Maybe Int Int Maybe Int Int Maybe Int

Maybe Int

Maybe Int

解决⽅法3：引⼊⼀个新的操作 bind

 eval :: Expr -> Maybe Int

 eval (Val n) = Just n

 eval (Div x y) = eval x >>= \n ->

 eval y >>= \m ->

 safediv n m

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= f = case mx of

 Nothing -> Nothing

 Just x -> f x

 eval :: Expr -> Maybe Int

 eval (Val n) = Just n

 eval (Div x y) = eval x >>= (\n -> (eval y >>= (\m -> safediv n m)))

先耍⼀点朝三暮四的⼩把戏

 eval :: Expr -> Maybe Int

 eval (Val n) = Just n

 eval (Div x y) = do n <- eval x

 m <- eval y

 safediv n m再撒⼀点扑朔迷离的语法糖

Monad
 {- The Monad class defines the basic operations over a monad,

 a concept from a branch of mathematics known as "category theory".

 From the perspective of a Haskell programmer, however,

 it is best to think of a monad as an abstract datatype of actions.

 The do expressions provide a convenient syntax for writing monadic expressions.-}

 class Applicative m => Monad m where

 -- Inject a value into the monadic type.

 return :: a -> m a

 return = pure

 -- Sequentially compose two actions,

 -- passing any value produced by the first as an argument to the second.

 (>>=) :: m a -> (a -> m b) -> m b

 -- Sequentially compose two actions, discarding any value produced by the first,

 -- like sequencing operators (such as the semicolon) in imperative languages.

 (>>) :: m a -> m b -> m b

 m >> k = m >>= _ -> k

a >>= f do v <- a

f v

a >> b do a

 b

do v <- a

b__

 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 m >> k = m >>= _ -> k

声明 Maybe 为Monad的⼀个实例

 instance Monad Maybe where

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

声明 [] 为Monad的⼀个实例
 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 m >> k = m >>= _ -> k

 instance Monad [] where

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = [y | x <- xs, y <- f x]

The State Monad
✤问题：如何⽤函数描述状态的变化

‣ 状态：⼀种数据类型
- type State = Int

- 仅仅是⼀个示例；需根据具体问题确定状态的类型

‣ 状态变换器
- type ST = State -> State

‣ 带有结果的状态变换器
- type ST a = State -> (a, State)

Haskell不⽀持将ST声明为Functor/Applicative/Monad的实例

⽤ newtype 定义 ST

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

将 ST 声明为 Functor 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Functor ST where

 -- fmap :: (a -> b) -> ST a -> ST b

 fmap g st = S (\s -> let (x, s') = app st s in (g x, s'))

将 ST 声明为 Functor 的实例

 instance Functor ST where

 -- fmap :: (a -> b) -> ST a -> ST b

 fmap g st = S $ \s -> let (x, s') = app st s in (g x, s')

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

将 ST 声明为 Applicative 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Applicative ST where

 -- pure :: a -> ST a

 pure x = S (\s -> (x,s))

 -- (<*>) :: ST (a -> b) -> ST a -> ST b

 stf <*> stx = S (\s -> let (f, s') = app stf s

 (x, s'') = app stx s

 in (f x, s''))

将 ST 声明为 Applicative 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Applicative ST where

 -- pure :: a -> ST a

 pure x = S $ \s -> (x,s)

 -- (<*>) :: ST (a -> b) -> ST a -> ST b

 stf <*> stx = S (\s -> let (f, s') = app stf s

 (x, s'') = app stx s

 in (f x, s''))

将 ST 声明为 Applicative 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Applicative ST where

 -- pure :: a -> ST a

 pure x = S $ \s -> (x,s)

 -- (<*>) :: ST (a -> b) -> ST a -> ST b

 stf <*> stx = S $ \s -> let (f, s') = app stf s

 (x, s'') = app stx s'

 in (f x, s''))

将 ST 声明为 Monad 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Monad ST where

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = S (\s -> let (x,s') = app st s

 in app (f x) s')

将 ST 声明为 Monad 的实例

 newtype ST a = S (State -> (a, State))

 app :: ST a -> State -> (a, State)

 app (S f) s = f s

 instance Monad ST where

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = S $ \s -> let (x,s') = app st s

 in app (f x) s')

The State Monad

这⼏张幻灯⽚讲的挺好的

下次不要再讲了
感觉讲了⼀些⽆⽤的废话

在我第⼀次看到State Monad时
内⼼的想法其实也和你们差不多

The State Monad 之 应⽤示例：树的重新标注

✤Consider the problem of defining a function that relabels
each leaf in such a tree with a unique or fresh integer.

 data Tree a = Leaf a | Node (Tree a) (Tree a)

 deriving Show

 tree :: Tree Char

 tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')

 ghci> relabel tree

 Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)

树的重新标注 之 ⽅法⼀：朴实⽆华~隐⼊尘烟

 rlabel :: Tree a -> Int -> (Tree Int, Int)

 rlabel (Leaf _) n = (Leaf n, n+1)

 rlabel (Node l r) n = (Node l' r', n'')

 where (l', n') = rlabel l n

 (r', n'') = rlabel r n'

 relabel :: Tree a -> Tree Int

 relabel t = fst (rlabel t 0)

 ghci> relabel tree

 Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)

缺点：rlabel 的定义中

需要显式维护中间状态

树的重新标注 之 ⽅法⼆：Applicative
 fresh :: ST Int

 fresh = S $ \n -> (n, n+1)

 alabel :: Tree a -> ST (Tree Int)

 alabel (Leaf _) = Leaf <$> fresh

 alabel (Node l r) = Node <$> alabel l <*> alabel r

 relabel' :: Tree a -> Tree Int

 relabel' t = fst $ app (alabel t) 0

我时常在想，这些东⻄是永恒的吗？
如果是，它们栖身何处，以⾄可以被⼈类发现并表达

树的重新标注 之 ⽅法三：Monad
 mlabel :: Tree a -> ST (Tree Int)

 mlabel (Leaf _) = fresh >>= \n -> return $ Leaf n

 mlabel (Node l r) = mlabel l >>= \l' ->

 mlabel r >>= \r' -> return $ Node l' r'

 relabel'' :: Tree a -> Tree Int

 relabel'' t = fst $ app (mlabel t) 0

 mlabel (Leaf _) = do n <- fresh

 return (Leaf n)

 mlabel (Node l r) = do l' <- mlabel l

 r' <- mlabel r

 return $ Node l' r'

使⽤ do 改写 mlabel

Monad Laws
Left identity return a >>= h = h a

Right identity mx >>= return = mx

Associativity
(mx >>= g)_ >>= h = mx >>= (\x -> g x >>= h)

(mx >>= \x -> g x) >>= h = mx >>= (\x -> g x >>= h)

 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 m >> k = m >>= _ -> k

Monad Laws: Another Form

 -- The monad-composition operator

 -- defined in Control.Monad

 (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

 f >=> g = \x -> f x >>= g

Left identity

 return a >>= h___ = h a

(\x -> return x >>= h) a = h a

(return__ >=> h) a = h a

 return >=> h___ = h__

 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 ...

看！是不是 Left identity

Monad Laws: Another Form

Right identity

_. mb >>= return___ = mb_

_. f a >>= return___ = f a

(\x -> f x >>= return) a = f a

(f__ >=> return) a = f a

(f__ >=> return) a = f a

我时常在想，“朝三暮四”是个贬义词吗？

 -- The monad-composition operator

 -- defined in Control.Monad

 (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

 f >=> g = \x -> f x >>= g

 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 ...

Monad Laws: Another Form

Assoc

(. mb_ >>= g)__ >>= h___ = mb_ >>= (\x -> g x >>= h)___

(. f a >>= g)__ >>= h___ = f a >>= (\x -> g x >>= h)___

(. f a >>= g)__ >>= h___ = f a >>= (\x -> g x >=> h)___

(\x -> f x >>= g) a >>= h___ = f a >>= (\x -> g x >=> h)___

(\x -> f x >=> g) a >>= h___ = f a >>= (\x -> g x >=> h)___

(\x -> (\x -> f x >=> g) x >>= h) a = (\x -> f x >>= (\x -> g x >=> h)) a

(\x -> (\x -> f x >=> g) x >=> h) a = (\x -> f x >=> (\x -> g x >=> h)) a

(\x ->(\x -> f x >=> g) x >=> h) a = (\x -> f x >=> (\x -> g x >=> h)) a

 -- The monad-composition operator

 -- defined in Control.Monad

 (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

 f >=> g = \x -> f x >>= g

 class Applicative m => Monad m where

 return :: a -> m a

 return = pure

 (>>=) :: m a -> (a -> m b) -> m b

 ...

Monad Laws in practice

Left identity

do { x' <- return x; f x' }

return x >>= \x' -> f x'

return x >>= \x' -> f x'

do { f x }

do { f x }

Monad Laws in practice

Right identity

do { x <- mx; return x }___

mx >>= \x -> return x

mx >>= \x -> return x

mx >>= \x -> return x

 do { mx } >>= \x -> return x____

Monad Laws in practice
Associativity

do { y <- do { x <- mx; f x }; g y }
do { x <- mx; f x } >>= \y -> g y

(mx >>= \x -> f x) >>= \y -> g y_
(mx >>= \x -> f) >>= \y -> g y_
(mx >>=(\x--> f x) >>= \y -> g)y

do { x <- mx; do { y <- f x; g y} }
do { x <- mx; do { y <- f x; g y} }

Monad Laws in practice

 skip_and_get = do unused <- getLine

 line <- getLine

 return line

 skip_and_get = do unused <- getLine

 getLine

Right identity

Monad Laws in practice
 main = do answer <- skip_and_get

 putStrLn answer

 main = do answer <- do { unused <- getLine;

 getLine }

 putStrLn answer

 main = do unused <- getLine

 answer <- getLine

 putStrLn answer

Associativity

inlining

 这些law根本不是什么约束

⽽是天然就应该存在的

Monads as computation
✤Monadic computations have results.
‣ This is reflected in the types. Given a monad M, a value of

type M t is a computation resulting in a value of type t.

✤For any value, there is a computation which "does nothing",
and produces that result.
‣ return :: (Monad m) => a -> m a

Monads as computation
✤Given a pair of computations x and y, one can form the

computation x >> y, which intuitively "runs" the computation x,
throws away its result, then runs y returning its result.
‣ (>>) :: (Monad m) => m a -> m b -> m b

✤Further, we're allowed to use the result of the first computation
to decide "what to do next", rather than just throwing it away.
‣ (>>=) :: (Monad m) => m a -> (a -> m b) -> m b

‣ x >>= f: a computation which runs x, then applies f to its

result, getting a computation which it then runs.

Monads as computation

✤ Because computations are typically going to be built up from long chains
of >> and >>=, in Haskell, we have some syntax-sugar, called do-notation

Monads as computation
✤The basic mechanical translation for the do-notation:

Monads as computation

‣ This gives monadic computations a bit of an imperative feel.
‣ But it's important to remember that the monad in question gets to

decide what the combination means, and so some unusual forms
of control flow might actually occur.

‣ In some monads (like parsers, or the list monad), "backtracking"
may occur, and in others, even more exotic forms of control might
show up.

Monads as computation

Some examples from Control.Monad

✤ A function which takes a list of computations of the same type, and builds from
them a computation which will run each in turn and produce a list of the results.

Monads as computation

Some examples from Control.Monad

✤ There are variants of sequence and forM, called sequence_ and forM_, which
simply throw the results away as they run each of the actions.

Monads as computation

Some examples from Control.Monad

✤ Sometimes we only want a computation to happen when a given condition is true.

课堂练习 1
✤Define an instance of the Functor class for the following type of

binary trees that have data in their nodes:

 instance Functor Tree where

 -- fmap :: (a -> b) -> Tree a -> Tree b

 fmap g Leaf = Leaf

 fmap g (Node l x r) = Node (fmap g l) (g x) (fmap g r)

 data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Show)

课堂练习 1
✤Define an instance of the Functor class for the following type of

binary trees that have data in their nodes:

 instance Functor Tree where

 -- fmap :: (a -> b) -> Tree a -> Tree b

 fmap g Leaf = Leaf

 fmap g (Node l x r) = Node (fmap g l) (g x) (fmap g r)

 data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Show)

课堂练习 2
✤Complete the following instance declaration to make the

partially-applied function type (->) a into a functor:

 instance Functor ((->) a) where

 -- fmap :: (a -> b) -> f a -> f b

 -- fmap :: (b -> c) -> f b -> f c

 -- fmap :: (b -> c) -> (->) a b -> (->) a c

 -- fmap :: (b -> c) -> (a -> b) -> (a -> c)

 fmap = (.)

课堂练习 2
✤Complete the following instance declaration to make the

partially-applied function type (->) a into a functor:

 instance Functor ((->) a) where

 -- fmap :: (a -> b) -> f a -> f b

 -- fmap :: (b -> c) -> f b -> f c

 -- fmap :: (b -> c) -> (->) a b -> (->) a c

 -- fmap :: (b -> c) -> (a -> b) -> (a -> c)

 fmap = (.)

课堂练习 2
✤Complete the following instance declaration to make the

partially-applied function type (->) a into a functor:

 instance Functor ((->) a) where

 -- fmap :: (a -> b) -> f a -> f b

 -- fmap :: (b -> c) -> f b -> f c

 -- fmap :: (b -> c) -> (->) a b -> (->) a c

 -- fmap :: (b -> c) -> (a -> b) -> (a -> c)

 fmap = (.)

课堂练习 2
✤Complete the following instance declaration to make the

partially-applied function type (->) a into a functor:

 instance Functor ((->) a) where

 -- fmap :: (a -> b) -> f a -> f b

 -- fmap :: (b -> c) -> f b -> f c

 -- fmap :: (b -> c) -> (->) a b -> (->) a c

 -- fmap :: (b -> c) -> (a -> b) -> (a -> c)

 fmap = (.)

如果⼀个东⻄可以被定义为Functor的实例，那么，只有⼀种fmap的定义⽅式

课堂练习 2
✤Complete the following instance declaration to make the

partially-applied function type (->) a into a functor:

 instance Functor ((->) a) where

 -- fmap :: (a -> b) -> f a -> f b

 -- fmap :: (b -> c) -> f b -> f c

 -- fmap :: (b -> c) -> (->) a b -> (->) a c

 -- fmap :: (b -> c) -> (a -> b) -> (a -> c)

 fmap = (.)

如果⼀个东⻄可以被定义为Functor的实例，那么，只有⼀种fmap的定义⽅式

课堂练习 3
✤Define an instance of the Applicative class for the type (->) a

 instance Applicative ((->) a) where

 -- pure :: a -> f a

 -- pure :: b -> f b

 -- pure :: b -> a -> b

 pure = const

 -- (<*>) :: f (a -> b) -> f a -> f b

 -- (<*>) :: f (b -> c) -> f b -> f c

 -- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

 g <*> h = \x -> g x $ h x

课堂练习 3
✤Define an instance of the Applicative class for the type (->) a

 instance Applicative ((->) a) where

 -- pure :: a -> f a

 -- pure :: b -> f b

 -- pure :: b -> a -> b

 pure = const

 -- (<*>) :: f (a -> b) -> f a -> f b

 -- (<*>) :: f (b -> c) -> f b -> f c

 -- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

 g <*> h = \x -> g x $ h x

课堂练习 3
✤Define an instance of the Applicative class for the type (->) a

 instance Applicative ((->) a) where

 -- pure :: a -> f a

 -- pure :: b -> f b

 -- pure :: b -> a -> b

 pure = const

 -- (<*>) :: f (a -> b) -> f a -> f b

 -- (<*>) :: f (b -> c) -> f b -> f c

 -- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

 g <*> h = \x -> g x $ h x

课堂练习 3
✤Define an instance of the Applicative class for the type (->) a

 instance Applicative ((->) a) where

 -- pure :: a -> f a

 -- pure :: b -> f b

 -- pure :: b -> a -> b

 pure = const

 -- (<*>) :: f (a -> b) -> f a -> f b

 -- (<*>) :: f (b -> c) -> f b -> f c

 -- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

 g <*> h = \x -> g x $ h x

课堂练习 3
✤Define an instance of the Applicative class for the type (->) a

 instance Applicative ((->) a) where

 -- pure :: a -> f a

 -- pure :: b -> f b

 -- pure :: b -> a -> b

 pure = const

 -- (<*>) :: f (a -> b) -> f a -> f b

 -- (<*>) :: f (b -> c) -> f b -> f c

 -- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

 g <*> h = \x -> g x $ h x

作业

12-1 Define an instance of the Monad class for the type (->) a.

12-2 Given the following type of expressions
 data Expr a = Var a | Val Int | Add (Expr a) (Expr a)
 deriving Show
that contain variables of some type a, show how to make
this type into instances of the Functor, Applicative and
Monad classes. With the aid of an example, explain what the
>>= operator for this type does.

第10章：Monads and More

Adapted from Graham’s Lecture slides

就到这⾥吧

