计算概论A—实验班 函数式程序设计 Functional Programming

胡振江,张伟

北京大学 计算机学院 2022年09~12月

第12章: Monads and More

主要知识点: Functor, Applicative, Monad

Adapted from Graham's Lecture slides

两种提升代码抽象层次的方式

Level 1: Polymorphic Functions (over types)

Level 2: Generic Functions (over type constructors)

length1 :: List a -> Int

length2 :: t a -> Int

inc :: [Int] -> [Int] inc [] = []inc (n:ns) = n+1 : inc ns

map f [] = []

计算的抽象

sqr :: [Int] -> [Int] sqr [] = [] $sqr(n:ns) = n^2 : sqr ns$

- map :: (a -> b) -> [a] -> [b]
- map f (x:xs) = f x : map f xs

 $inc = map (+1) sqr = map (^1)$

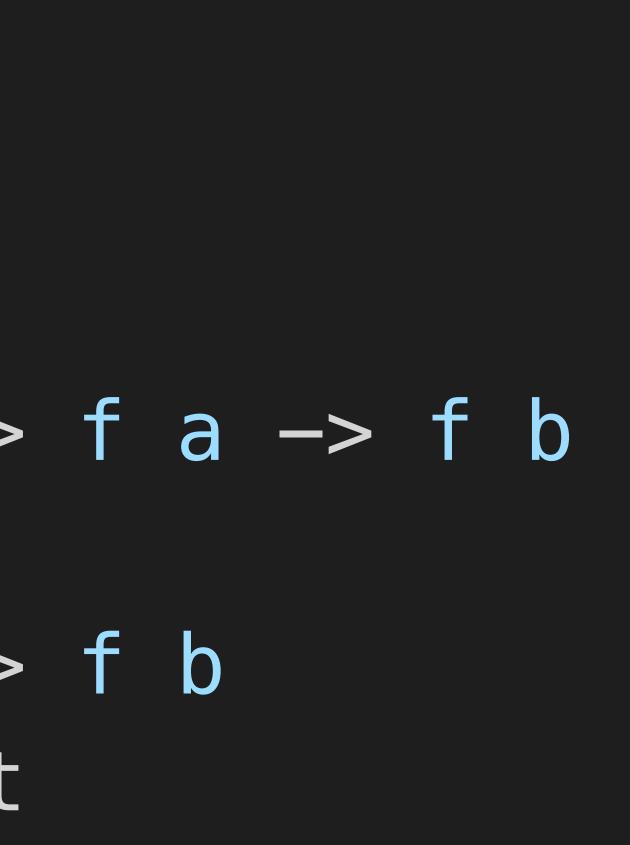
-- Exported by Prelude class Functor f where

fmap :: (a -> b) -> f a -> f b

(<\$) :: b -> f a -> f b (<\$) = fmap. const

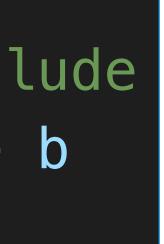
(tmap cons fmap (cons

Functor



t)	b	fa
t	b)	fa

-- Exported by Prelude const :: b -> a -> b const x _ = x



-- Exported by Prelude class Functor f where fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$ (<\$) :: $a \rightarrow f b \rightarrow f a$

 $(<\$) = fmap \cdot const$

-- Exported by Prelude instance Functor [] where -- fmap :: (a -> b) -> [a] -> [b] fmap = map

Functor

ghci> fmap (+1) [1,2,3] [2, 3, 4]ghci> fmap (^2) [1,2,3] [1, 4, 9]

data Maybe a = Nothing | Just a

instance Functor Maybe where fmap _ Nothing = Nothing fmap g (Just x) = Just (g x)

> ghci> fmap (+1) (Just 3) Just 4 ghci> fmap (+1) Nothing Nothing Just True

-- fmap :: $(a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b$

ghci> fmap not (Just False)

data Tree a = Leaf a | Node (Tree a) (Tree a) deriving (Show)

instance Functor Tree where -- fmap :: $(a \rightarrow b) \rightarrow Tree a \rightarrow Tree b$ fmap g (Leaf x) = Leaf \$ g x

> ghci> fmap length (Leaf "abc") Leaf 3 ghci> fmap even \$ Node (Leaf 1) (Leaf 2) Node (Leaf False) (Leaf True)

fmap g (Node l r) = Node (fmap g l) (fmap g r)

instance Functor IO where -- fmap :: (a -> b) -> IO a -> IO b fmap g mx = do x <- mx return \$ g x

ghci> fmap show \$ return True "True"

Generic Function Definition

inc :: Functor f => f Int -> f Int inc = fmap (+1)

ghci> inc \$ Just 1 Just 2 ghci> inc [1,2,3,4,5] [2,3,4,5,6] ghci> inc \$ Node (Leaf 1) (Leaf 2) Node (Leaf 2) (Leaf 3)

fmap id = id

<u>one</u> function fmap that satisfies the required laws.

- That is, if it is possible to make a given parameterized type into a functor, there is only one way to achieve this.
- Hence, the instances that we defined for lists, Maybe, Tree and IO were all uniquely determined.

fmap (f . g) = fmap f . fmap g

For any parameterized type in Haskell, there is <u>at most</u>

<\$> : An infix synonym for fmap

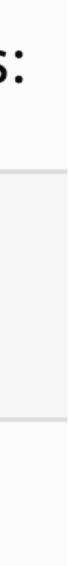
The name of this operator is an allusion to \$. Note the similarities between their types:

(\$) :: (a -> b) -> a -> b(<\$>) :: Functor f => (a -> b) -> f a -> f b(\$) ::

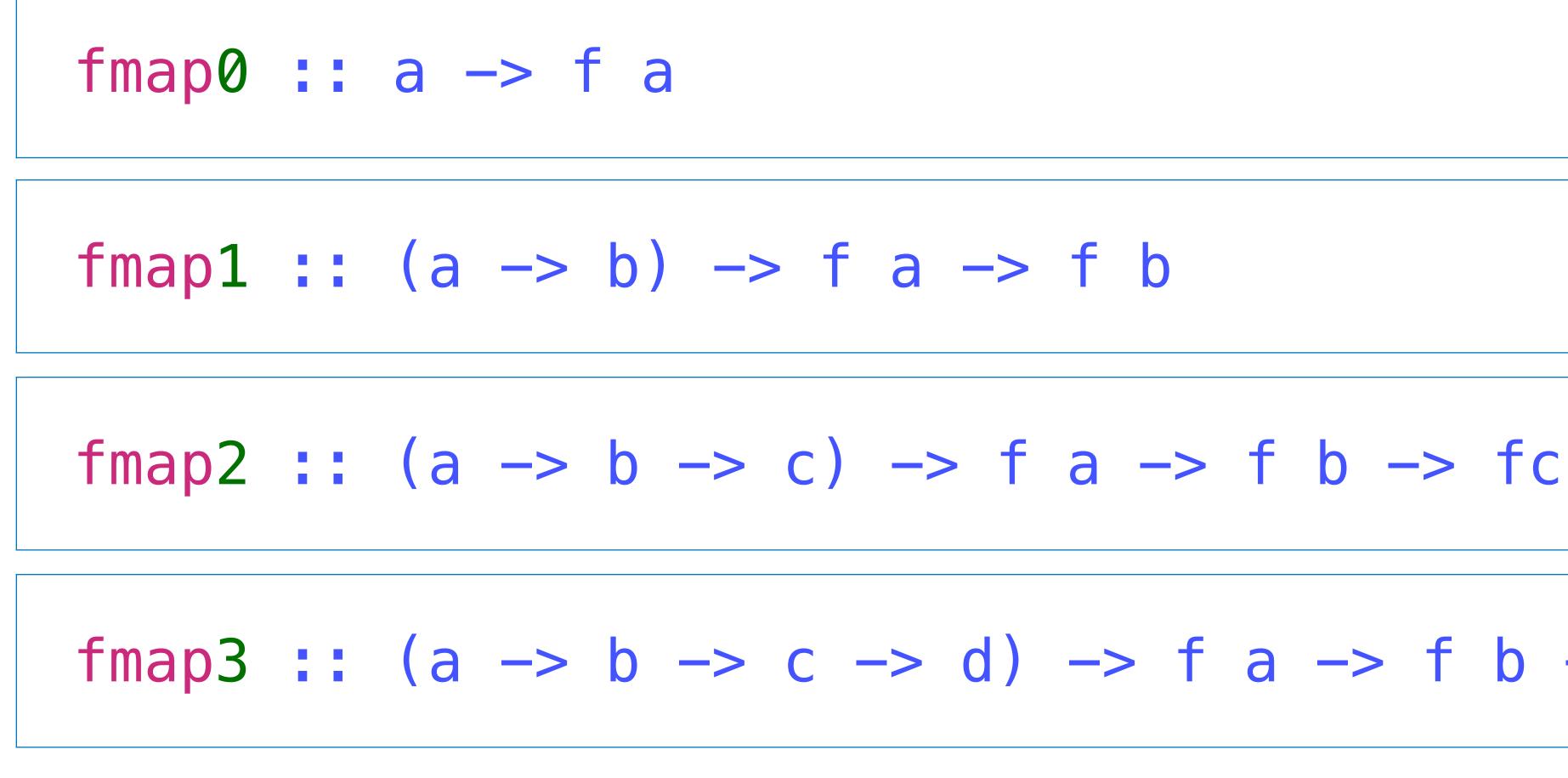
Whereas \$ is function application, <\$> is function application lifted over a Functor.

$(a \rightarrow b) \rightarrow f a \rightarrow f b$

b)	->		а	->		b
b١	->	f	а	->	f	h



Applicative Functor



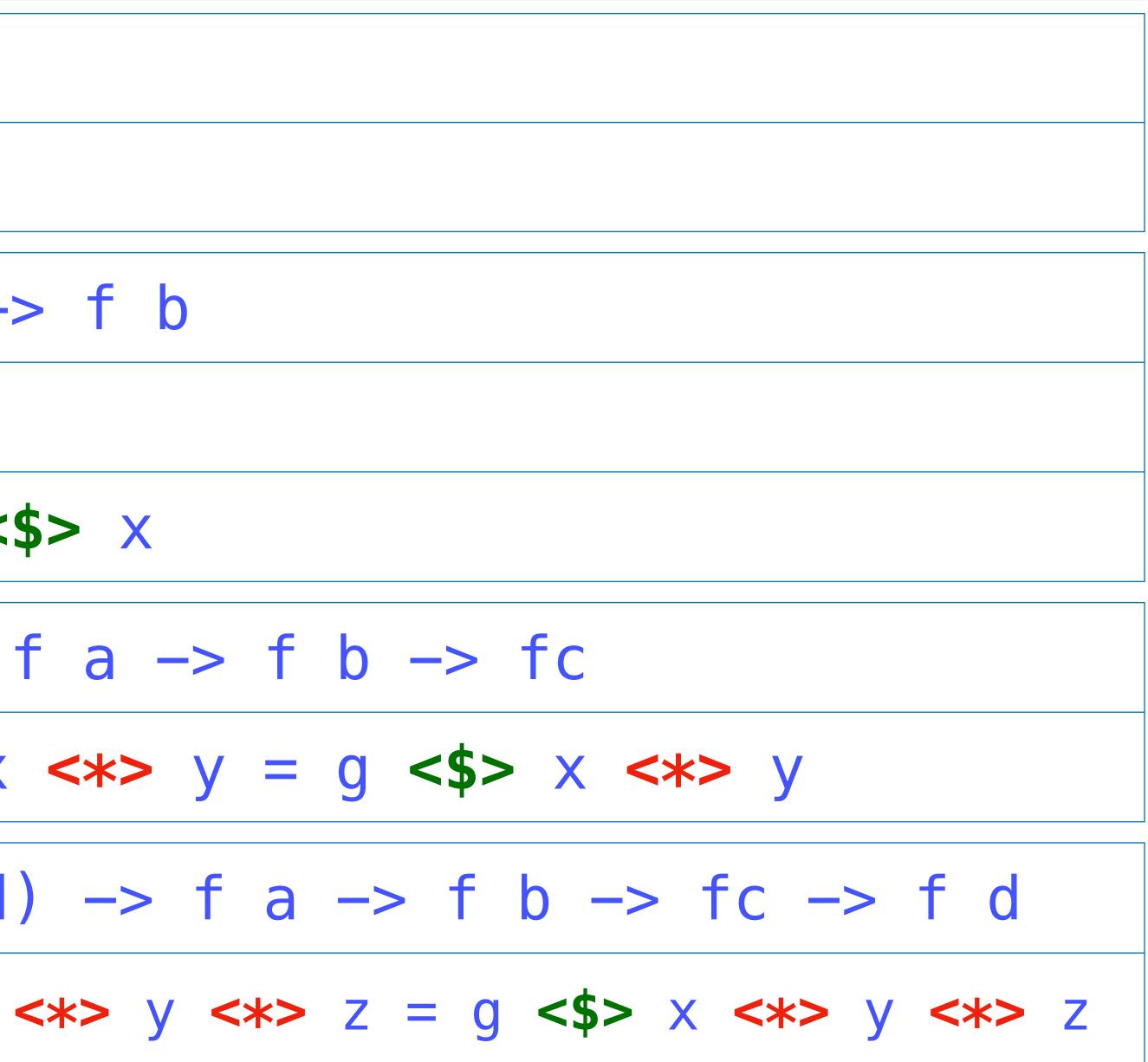
fmap3 :: (a -> b -> c -> d) -> f a -> f b -> fc -> f d

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

pure :: a -> f a	(<*>)
fmap0 :: a -> f a	
fmap0 = pure	
fmap1 :: (a -> b) -	> f a -:
<pre>fmap1 g x = pure g</pre>	<*> X
<pre>fmap1 g x = fmap g</pre>	x = g <
fmap2 :: (a -> b ->	C) -> .
<pre>fmap2 g x y = pure</pre>	g <*> x
fmap3 :: (a -> b ->	c -> d
fmap3 g x y z = pure	g <*> x

-> f b



Applicative Functor

Applicative Functor: 一个简化版本

class Functor f => Applicative f where -- Lift a value pure :: a -> f a -- Sequential application. (<*>) :: f (a -> b) -> f a -> f b

Applicative Functor: 一个简化版本

class Functor f => Applicative f where -- Lift a value pure :: a -> f a -- Sequential application. (<*>) :: f (a -> b) -> f a -> f b

声明 Maybe为Applicative的一个实例

instance Applicative Maybe where -- pure :: a -> Maybe a pure = Just

Nothing <*> _ Nothing (Just g) < > mx = g < > mx

-- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

Applicative Functor: – class Functor f => Appli -- Lift a value pure :: a -> f a — Sequential applica (<*>) :: f (a -> b)

instance Applicative Maybe where --- pure :: a -> Maybe a pure = Just

Nothing <*> _ Nothing (Just g) < > mx = g < > mx

- ghci> pure (+1) <*> Just 1
- Just 2
- ghci> pure (+) <*> Just 1 <*> Just 2 Just 3
- ghci> pure (+) <*> Nothing <*> Just 2 Nothing
- ghci> Nothing <*> Just 1
- Nothing
- 声明 Maybe为Applicative的一个实例
- -- (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

声明[]为Applicative的一个实例

instance Applicative [] where -- pure :: a -> [a] pure x = [x]

> -- (<*>) :: [a -> b] -> [a] -> [b] gs <*> xs = [g x | g <- gs, x <- xs]

> > ghci> pure (+1) <*> [1,2,3] [2, 3, 4]ghci> pure (+) <*> [1] <*> [2] [3] [3,4,6,8]

ghci> pure (*) <*> [1,2] <*> [3,4]

instance Applicative IO where -- pure :: a -> IO a pure = return

-- (<*>) :: IO (a -> b) -> IO a -> IO b

getChars :: Int -> IO String getChars 0 = return

mg <*> mx = do {g <- mg; x <- mx; return (g x)}

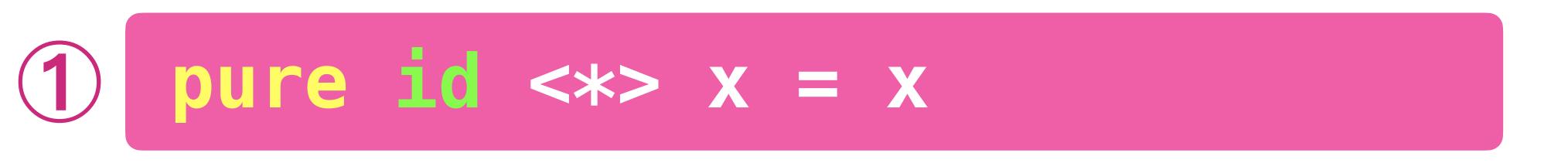
getChars n = pure (:) <*> getChar <*> getChars (n-1)

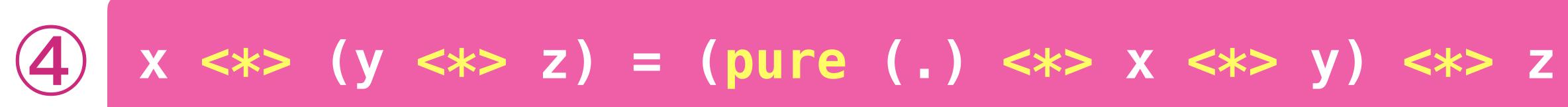
Generic Function Definition

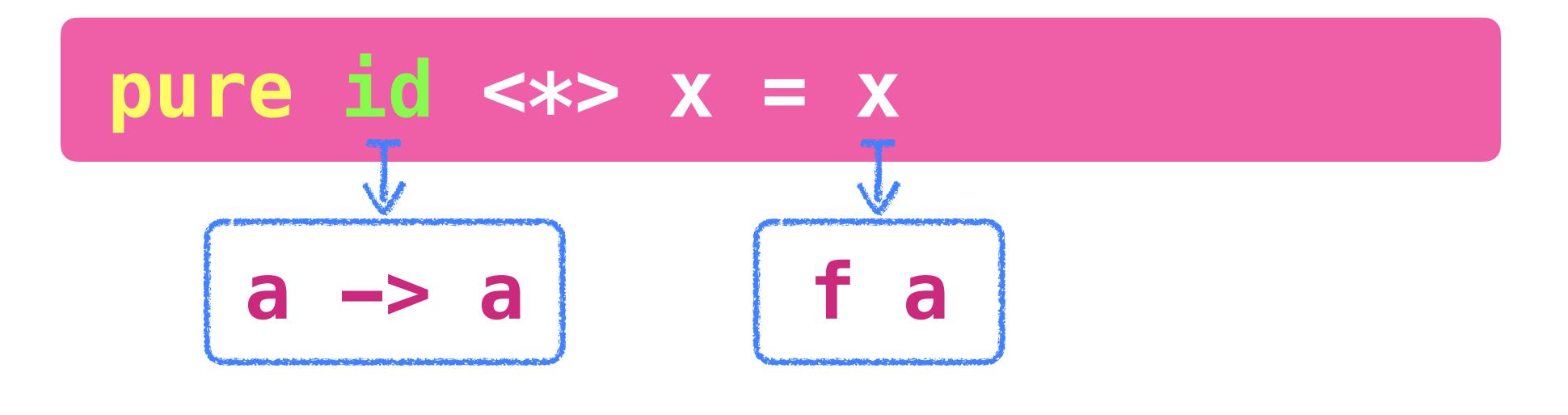
sequenceA :: Applicative f => [f a] -> f [a] sequenceA [] = pure [] sequenceA (x:xs) = pure (:) <*> x <*> sequenceA xs

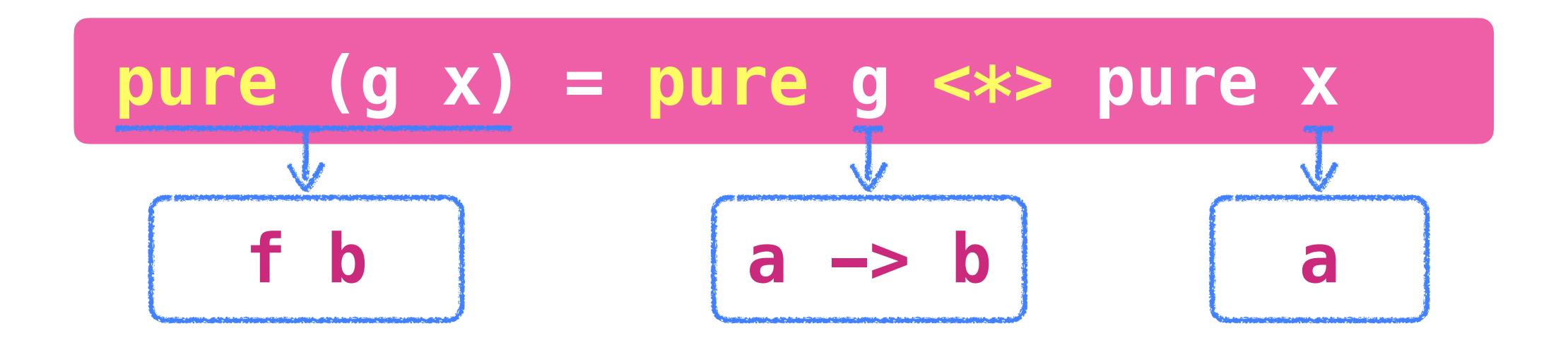
ghci> sequenceA [Just 1, Just 2, Just 3] Just [1,2,3] ghci> sequenceA [Just 1, Nothing, Just 3] Nothing ghci> sequenceA [[1,2,3], [4,5,6], [7,8,9]] [[1,4,7],[1,4,8],[1,4,9],[1,5,7],[1,5,8],[1,5,9],[1,6,7],[1,6,8],[1,6,9],[2,4,7],[2,4,8],[2,4,9],[2,5,7],[2,5,8],[2,5,9],[2,6,7],[2,6,8],[2,6,9], [3,4,7],[3,4,8],[3,4,9],[3,5,7],[3,5,8],[3,5,9],[3,6,7],[3,6,8],[3,6,9]]

Applicative Laws

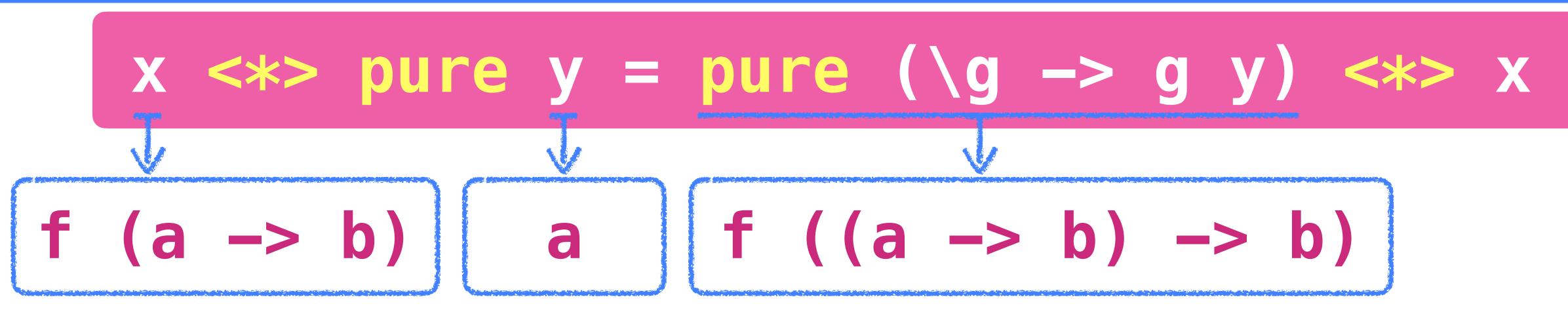






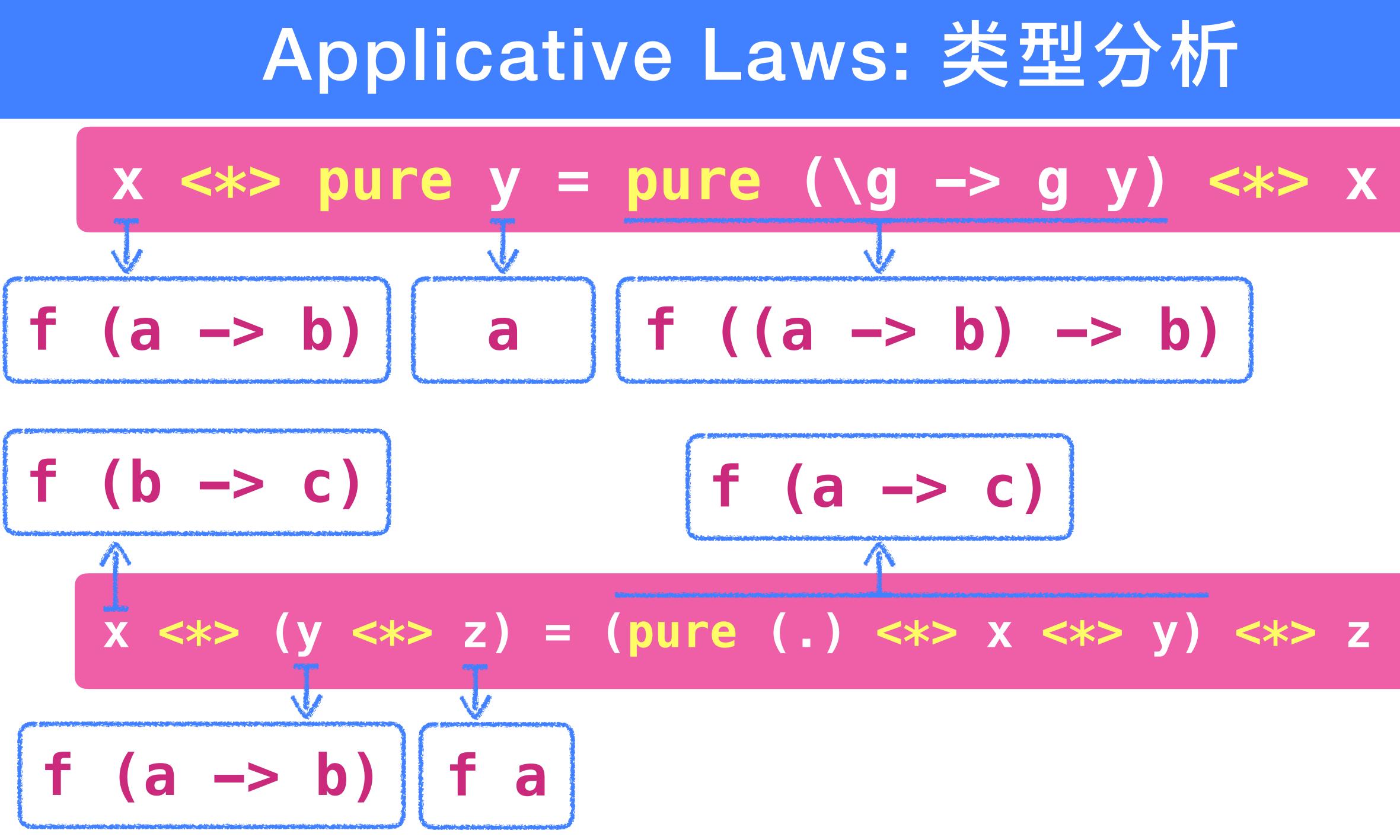


Applicative Laws: 类型分析



x < *> (y < *> z) = (pure (.) < *> x < *> y) < *> z

Applicative Laws: 类型分析



data Expr = Val Int | Div Expr Expr eval :: Expr -> Int eval (Val n) = neval (Div x y) = eval x div eval y

ghci> eval \$ Div (Val 1) (Val 0) *** Exception: divide by zero

safediv _ 0 = Nothing safediv n m = Just (n `div` m)

eval :: Expr -> Maybe Int eval (Val n) = Just neval (Div x y) = case eval x of

解决方法1

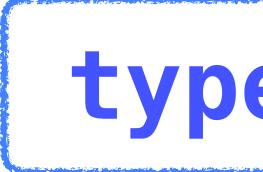
- safediv :: Int -> Int -> Maybe Int

 - Nothing -> Nothing
 - Just n -> case eval y of
 - Nothing -> Nothing
 - Just m -> safediv n m

safediv :: Int -> Int -> Maybe Int safediv $_0 = Nothing$ safediv n m = Just (n `div` m)

eval :: Expr -> Maybe Int eval (Val n) = pure n

类型错误



解决方法2

eval (Div x y) = pure safediv <*> eval x <*> eval y

type: Maybe (Maybe Int)

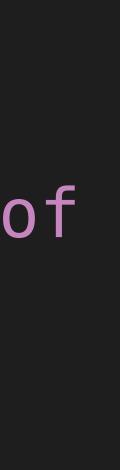
safediv _ 0 = Nothing safediv n m = Just (n `div` m)

eval :: Expr -> Maybe Int Maybe (Maybe Int) eval (Val n) = pure nJust $r \rightarrow r$

还是不够简洁

解决方法2

- safediv :: Int -> Int -> Maybe Int
- eval (Div x y) = case pure safediv <*> eval x <*> eval y of
 - Nothing -> Nothing



解决方法3:引入一个新的操作 bind (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b mx >>= f = case mx ofNothing -> Nothing Just x \rightarrow f x Maybe Int eval (Div x y) = eval x >>= (\n -> (eval y >>= (\m -> safediv n m)) V Maybe Int Maybe Int Int Int Maybe Int VV Maybe Int

eval :: Expr -> Maybe Int eval (Val n) = Just n

解决方法3:引入一个新的操作 bind

mx >>= f = case mx ofNothing -> Nothing Just $x \rightarrow f x$

eval :: Expr -> Maybe Int eval (Val n) = Just n

先耍一点朝三暮四的小把戏

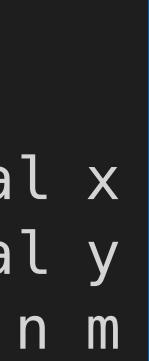
eval :: Expr -> Maybe Int eval (Val n) = Just neval (Div x y)

= eval x >>= $\langle n ->$ eval y >>= \mbox{m} -> safediv n m

(>>=) :: Maybe a \rightarrow $(a \rightarrow Maybe b) \rightarrow Maybe b$

eval (Div x y) = eval x >>= (\n -> (eval y >>= (\m -> safediv n m)))

eval :: Expr -> Maybe Int eval (Val n) = Just neval (Div x y) = do n < - eval xm <- eval y safediv n m — 再撒一点扑朔迷离的语法糖





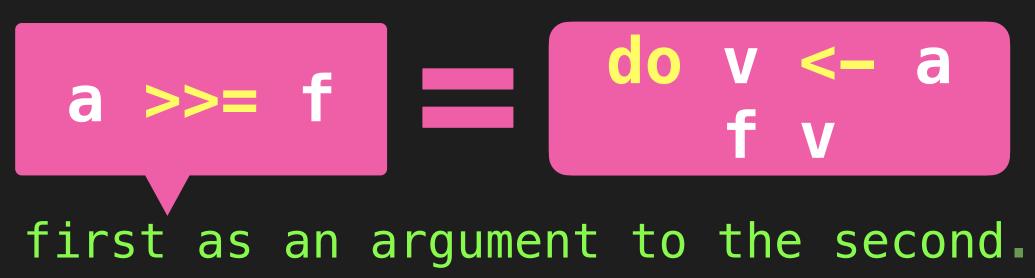
{- The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as "category theory". From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. The do expressions provide a convenient syntax for writing monadic expressions class Applicative m => Monad m where

Inject a value into the monadic type. return :: a -> m a return = pure

— Sequentially compose two actions, -- passing any value produced by the first as an argument to the second. (>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b a >> b $m >> k = m >>= \backslash_ -> k$

Monad



-- Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.



声明 Maybe 为Monad的一个实例

class Applicative m => Monad m where return :: a -> m a return = pure(>>=) :: m a -> (a -> m b) -> m b (>>) :: m a -> m b -> m b $m >> k = m >>= \setminus_ -> k$

instance Monad Maybe where -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b Nothing >>= _ Nothing (Just x) >>= f = f x

声明[]为Monad的一个实例

class Applicative m => Monad m where return :: a -> m a return = pure

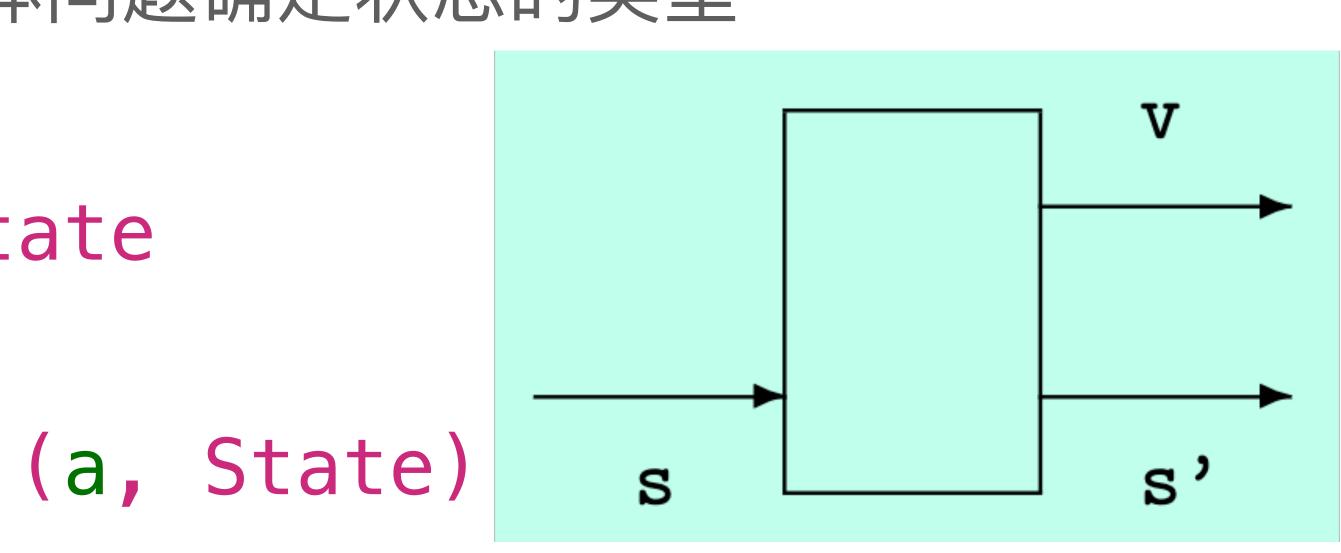
(>>=) :: m a -> (a -> m b) -> m b(>>) :: m a -> m b -> m b $m >> k = m >>= \backslash_ -> k$

instance Monad | where -- (>>=) :: [a] -> (a -> [b]) -> [b] xs >>= f = [y | x <- xs, y <- f x]

The State Monad

- ✤问题:如何用函数描述状态的变化
 - ▶ 状态: 一种数据类型
 - type State = Int
 - 仅仅是一个示例; 需根据具体问题确定状态的类型
 - ▶ 状态变换器
 - type ST = State -> State
 - ▶ 带有结果的状态变换器
 - type ST a = State -> (a, State)

Haskell不支持将ST声明为Functor/Applicative/Monad的实例

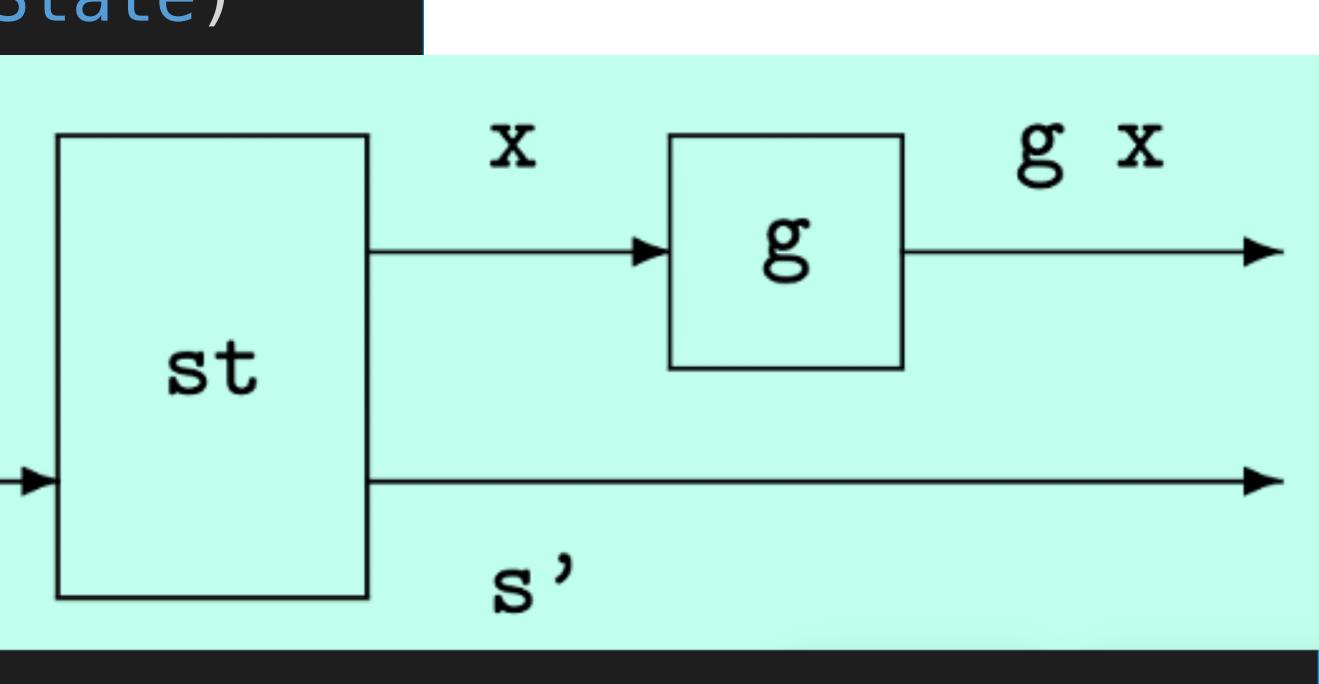


newtype ST a = S (State -> (a, State)) app :: ST a -> State -> (a, State) app (S f) s = f s

S

instance Functor ST where -- fmap :: (a -> b) -> ST a -> ST b fmap g st = S

将ST声明为 Functor 的实例

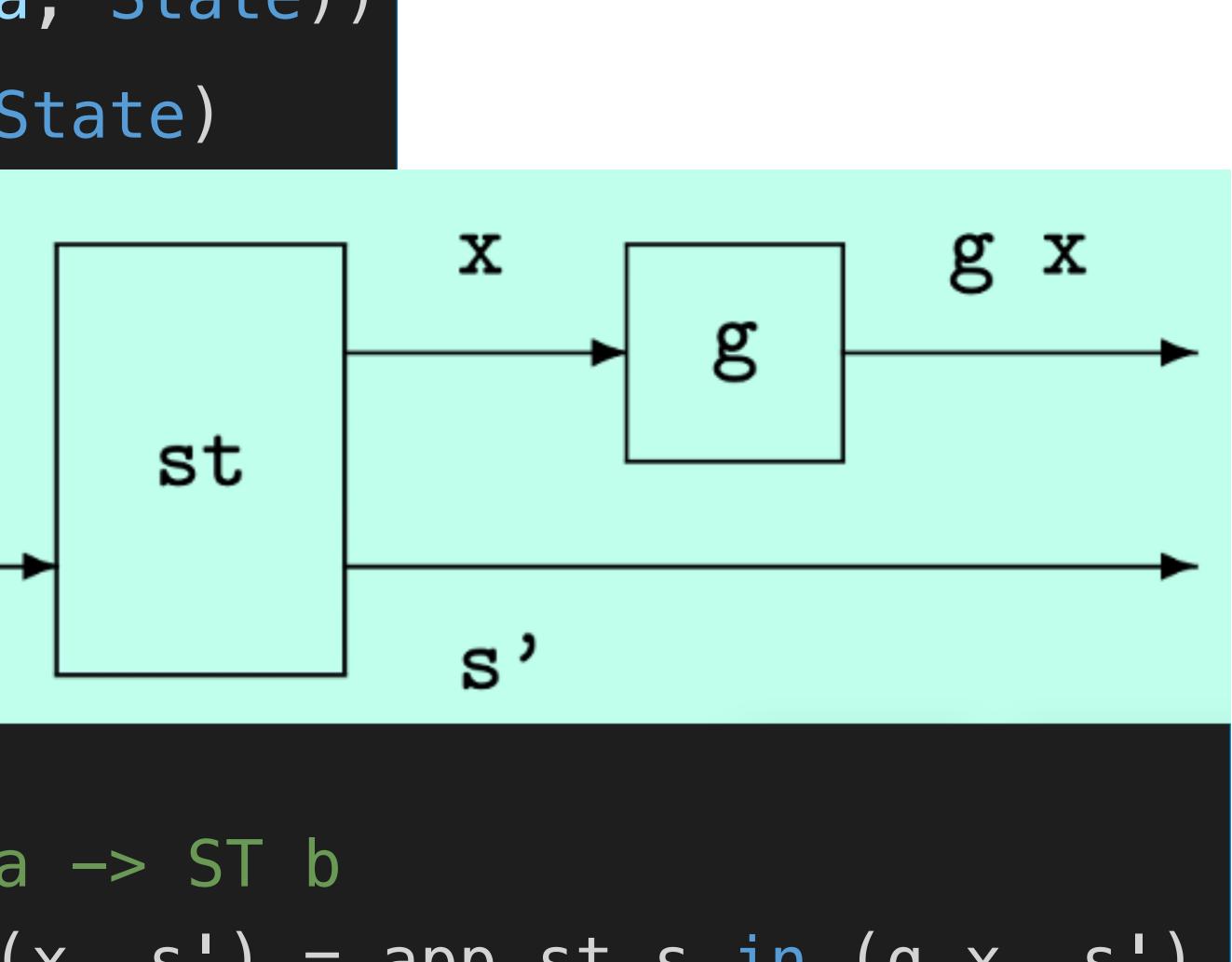


newtype ST a = S (State -> (a, State)) app :: ST a -> State -> (a, State) app (S f) s = f s

S

instance Functor ST where -- fmap :: (a -> b) -> ST a -> ST b

将ST声明为 Functor 的实例

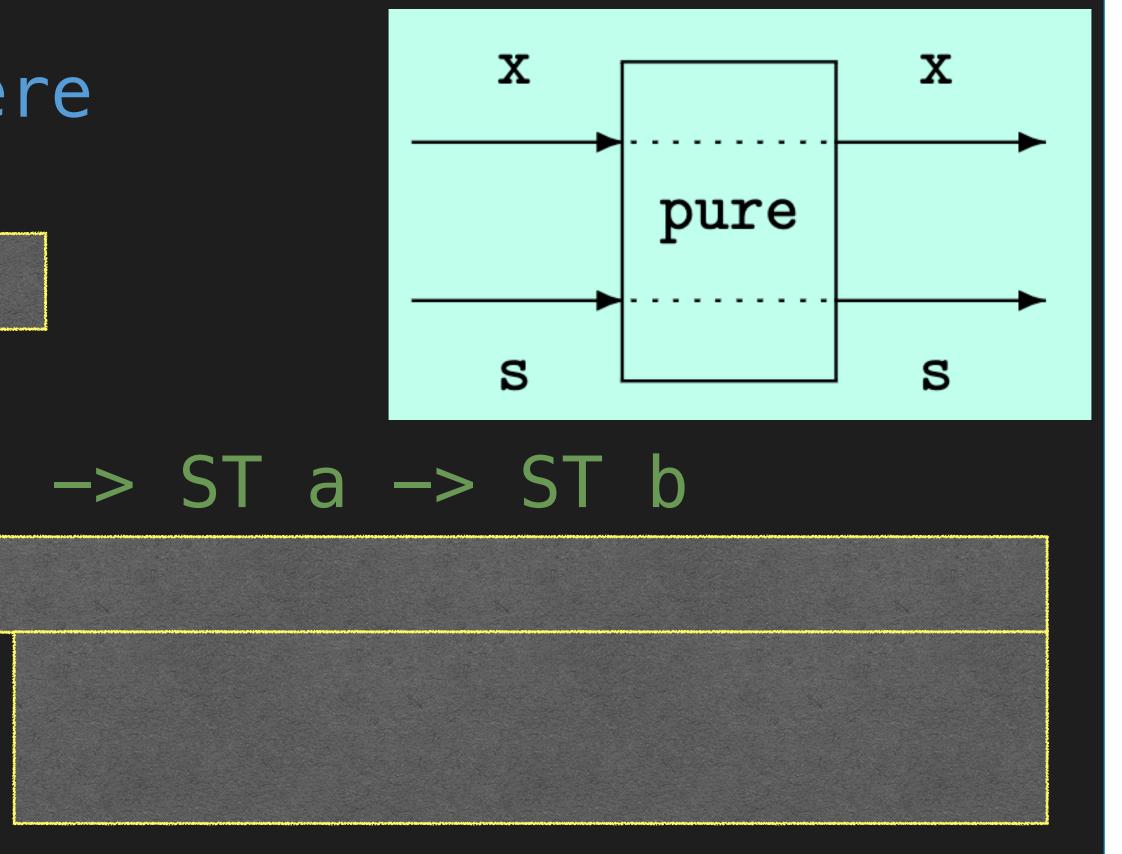


fmap g st = $S \ (s \rightarrow let (x, s') = app st s in (g x, s')$

将ST声明为 Applicative 的实例

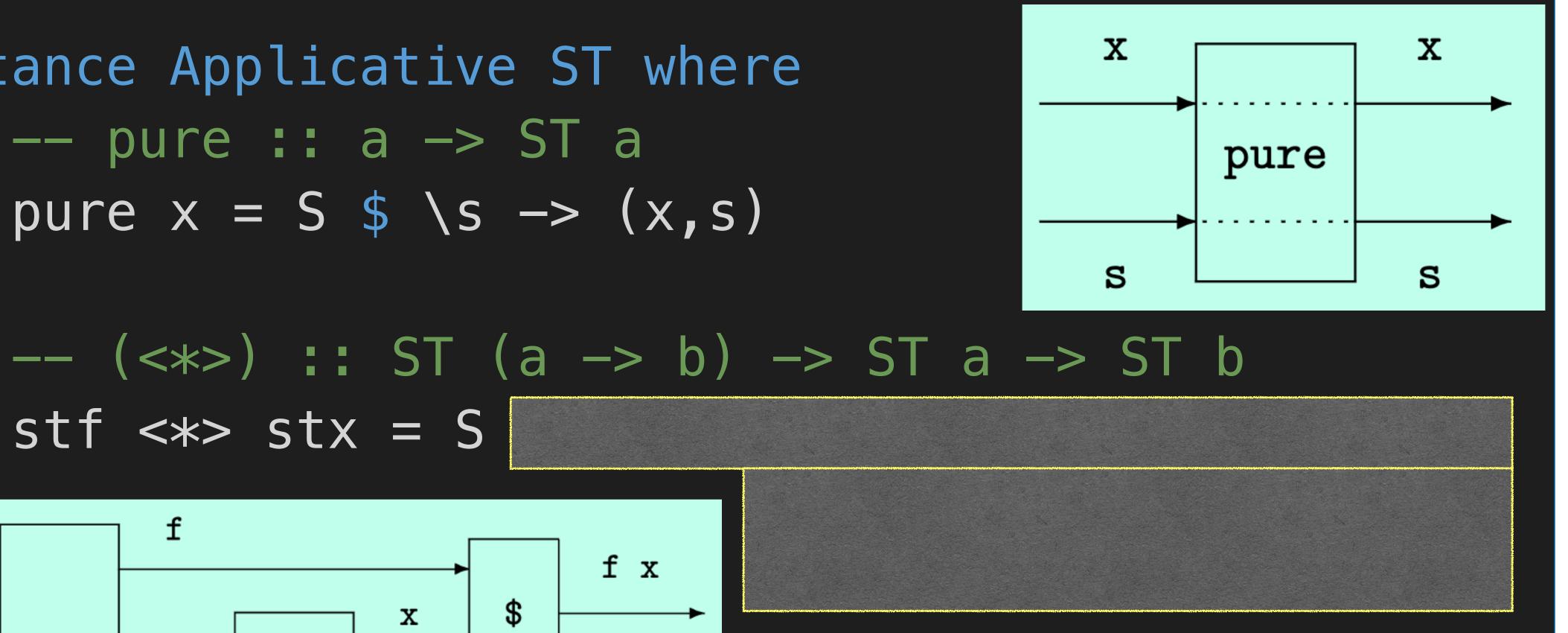
instance Applicative ST where -- pure :: a -> ST a pure x = S

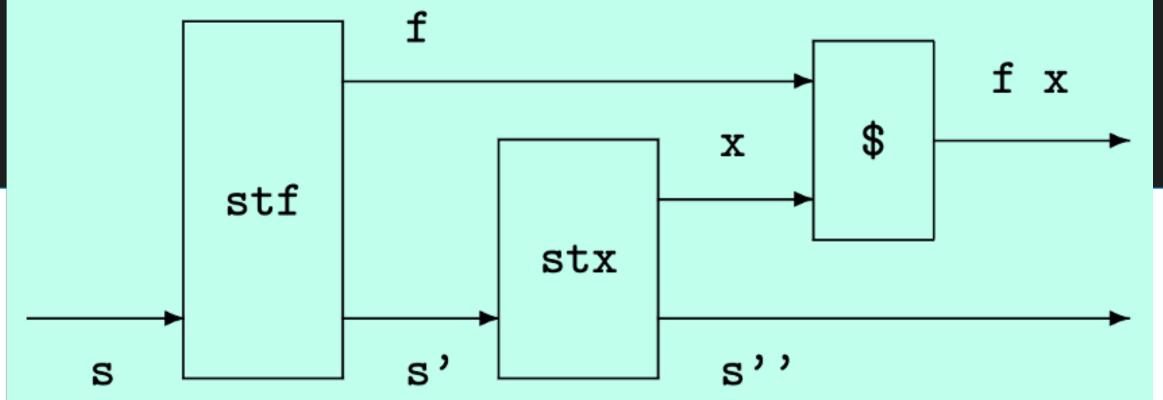
-- (<*>) :: ST (a -> b) -> ST a -> ST b stf < > stx = S

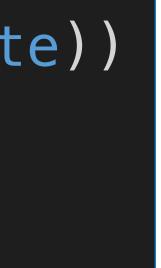


将ST声明为 Applicative 的实例

instance Applicative ST where -- pure :: a -> ST a



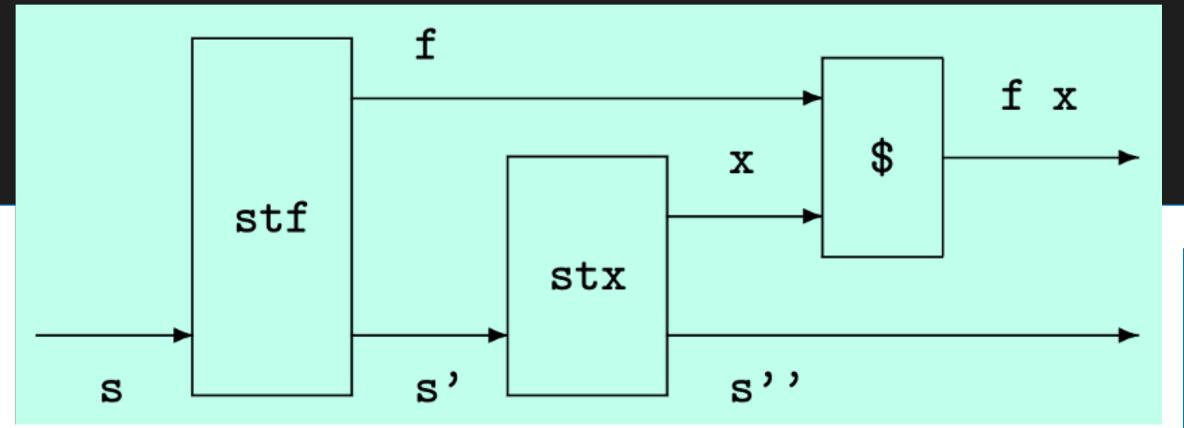


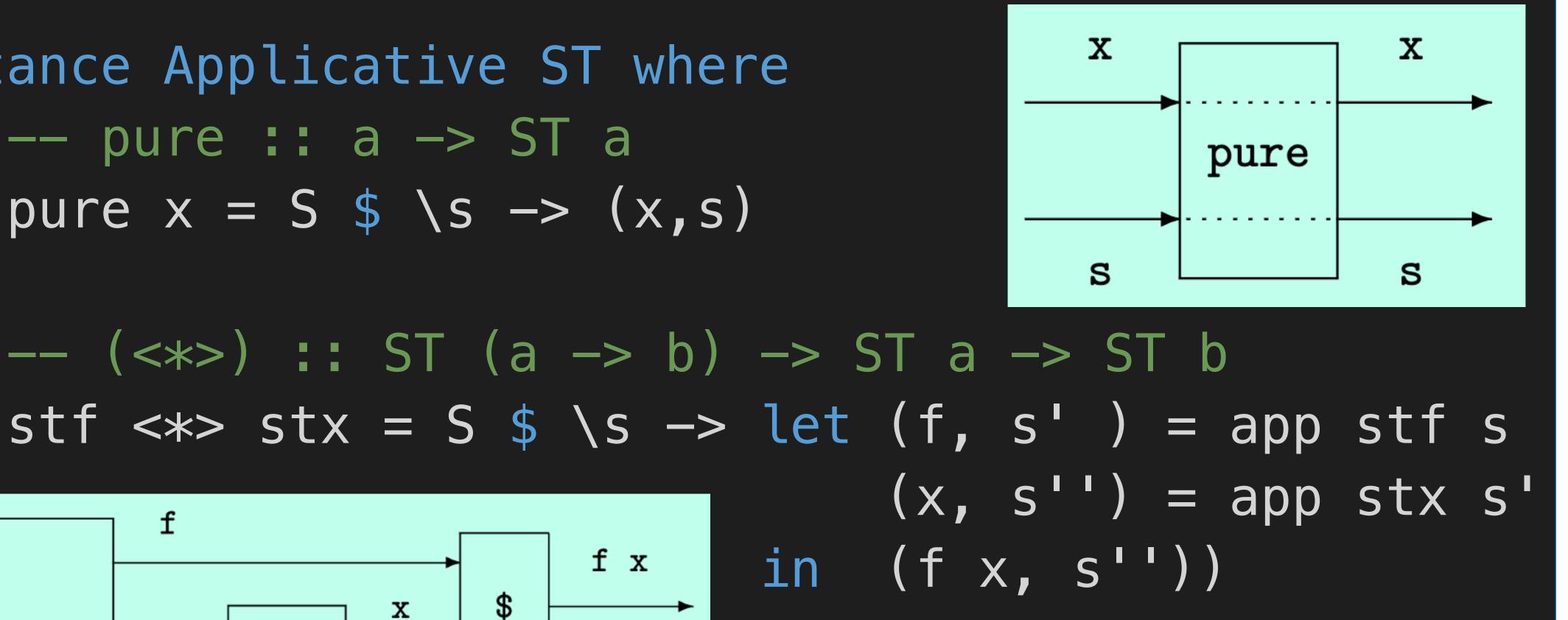


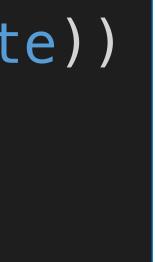
将ST声明为 Applicative 的实例

instance Applicative ST where -- pure :: a -> ST a pure $x = S \ (x,s)$

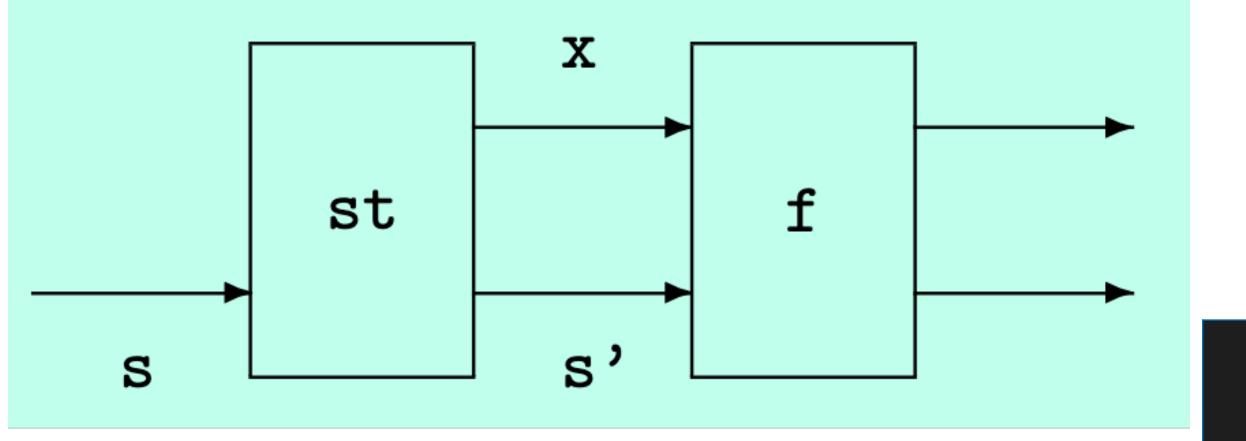
-- (<*>) :: ST (a -> b) -> ST a -> ST b





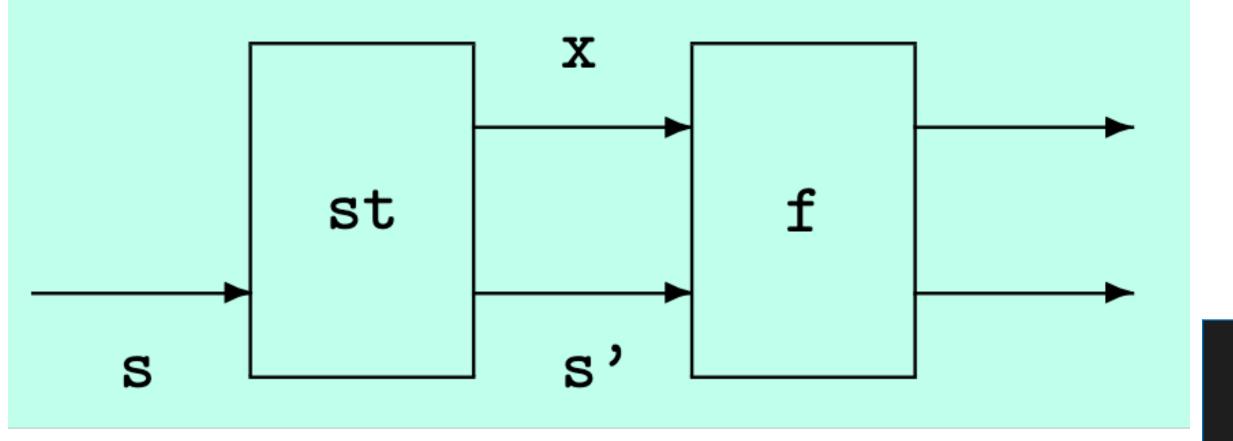


instance Monad ST where -- (>>=) :: ST a -> (a -> ST b) -> ST b st >>= f = S

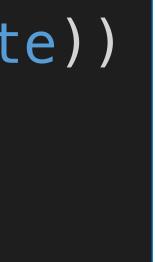


将ST声明为 Monad 的实例

instance Monad ST where -- (>>=) :: ST a -> (a -> ST b) -> ST b st >>= f = S s < -> let (x,s') = app st sin app (f x) s')



将ST声明为 Monad 的实例



The State Monad

这几张幻灯片讲的挺好的 下次不要再讲了 感觉讲了一些无用的废话

在我第一次看到State Monad时 内心的想法其实也和你们差不多

The State Monad 之应用示例: 树的重新标注

data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show

tree :: Tree Char

Consider the problem of defining a function that relabels each leaf in such a tree with a unique or fresh integer.

ghci> relabel tree

tree = Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c')

Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)

树的重新标注之方法一:朴实无华~隐入尘烟

rlabel :: Tree a -> Int -> (Tree Int, Int) rlabel (Leaf _) n = (Leaf n, n+1)rlabel (Node l r) n = (Node l' r', n'')

relabel :: Tree a -> Tree Int relabel t = fst (rlabel t 0)

ghci> relabel tree

- where (l', n') = rlabel l n(r', n'') = rlabel r n' 缺点: rlabel 的定义中 需要显式维护中间状态
- Node (Node (Leaf 0) (Leaf 1)) (Leaf 2)

树的重新标注之方法二: Applicative

fresh :: ST Int $fresh = S \\ (n, n+1)$ alabel :: Tree a -> ST (Tree Int) s alabel (Leaf) = Leaf <\$> fresh relabel' :: Tree a -> Tree Int relabel' t = fst \$ app (alabel t) 0

<\$> = `fmap` or g < > x = pure g < > x

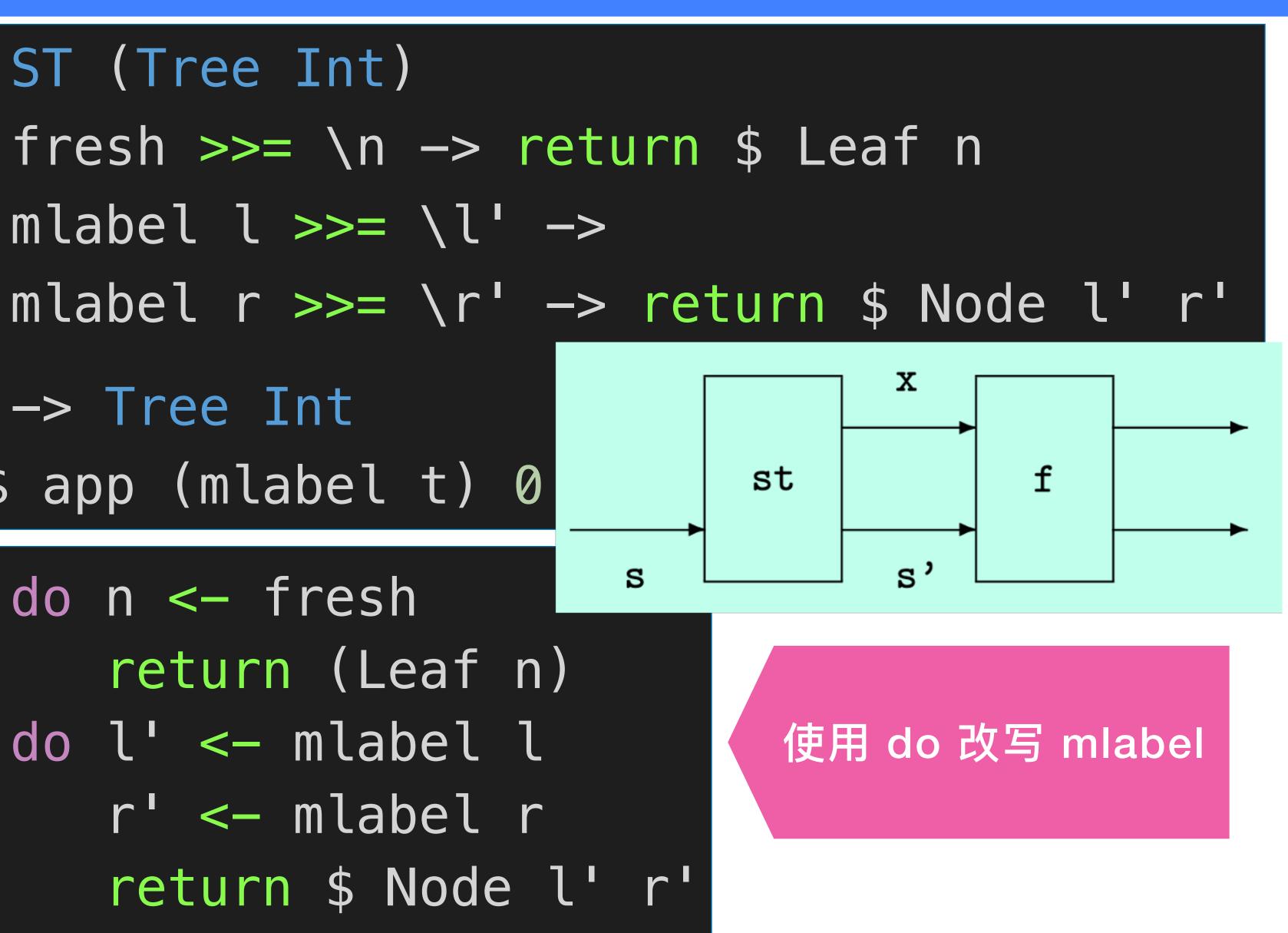
树的重新标注之方法三: Monad

mlabel :: Tree a -> ST (Tree Int) mlabel (Leaf _) = fresh >>= $n \rightarrow return$ \$ Leaf n mlabel (Node l r) = mlabel l >>= $\langle l' ->$

relabel'' :: Tree a -> Tree Int relabel'' t = fst \$ app (mlabel t) 0

mlabel (Leaf _) = do n <- fresh</pre>

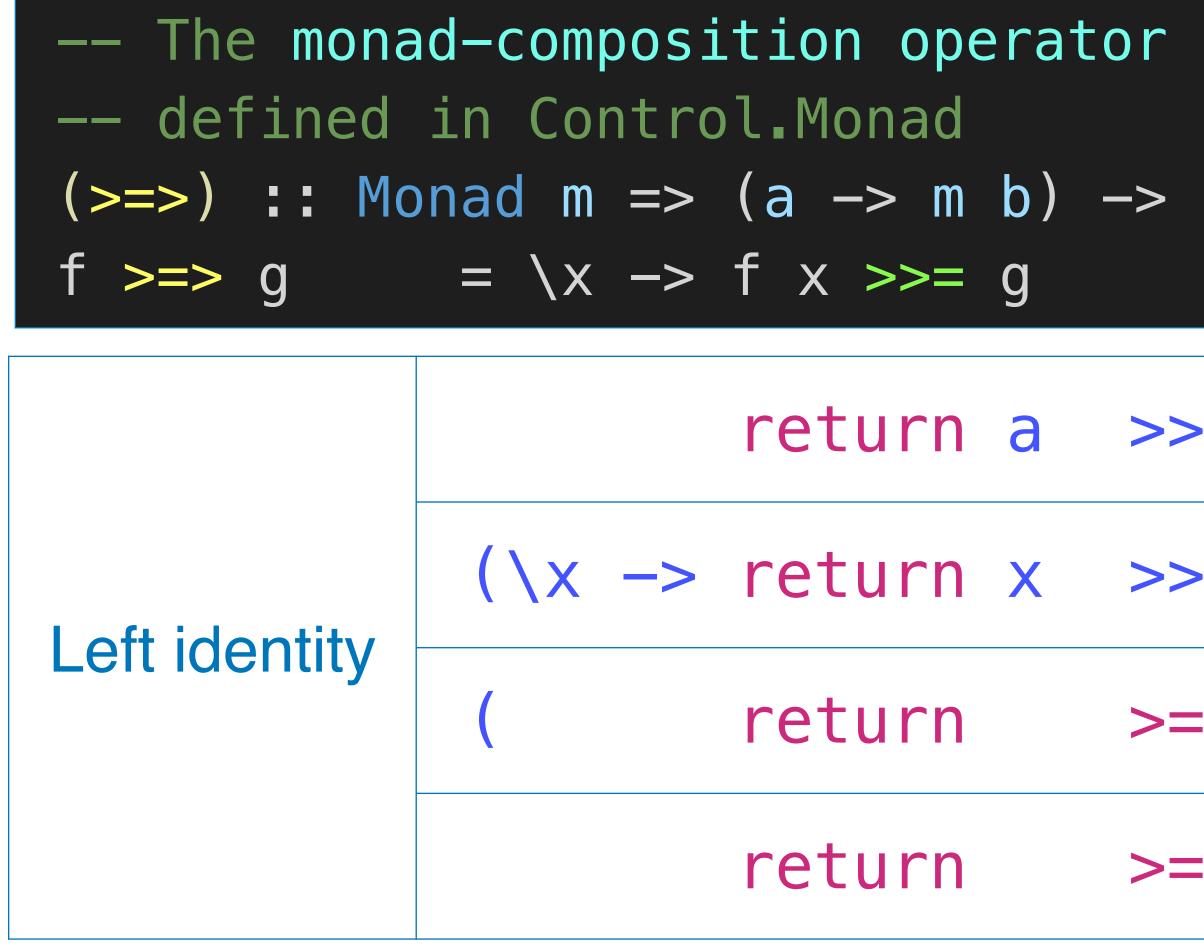
mlabel (Node l r) = do l' <- mlabel l



Monad Laws

Left identity	return a	>>=	h	—	h a
Right identity	mx	>>=	return	—	mx
	(mx >>= g)	>>=	h	= m>	x >>= (\x -> g x >>=
Associativity	(mx >>= \x	-> g	x) >>= h	= m >	x >>= (\x -> g x >>=
	ret ret (>> (>>	<pre>urn :: urn = >=) :: >) :: m</pre>	a -> m a pure	$a \rightarrow m$	ad m where n b) -> m b n b

Monad Laws: Another Form



	s Applicat return :: return = p	a -> m a	Monad m where
	•	-	-> m b) -> m b
(b ->	m c) -> (a	——————————————————————————————————————	
>=	h		h a
>=	h) a		h a
=>	h) a		h a
=>	h		h
	看! 是	不是 Le	ft identity

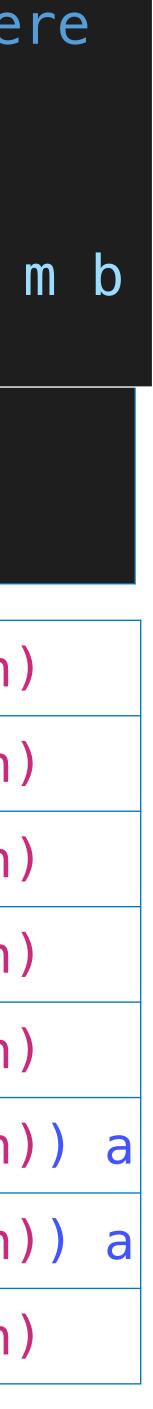
Monad Laws: Another Form					s Applic return : return =	: a ->			m	whe
<pre> The mona defined</pre>		(>>=) ::	•	-> (a	—> M	b)	->			
(>=>) :: Mo f >=> g				b -> I	m c) ->	(a ->	M C			
		mb	>>=	= r	eturn		-		mb	
		fa	>>=	= r	eturn				f	a
Right identity	(∖x ->	> f x	>>=	= r	eturn)	a			f	a
	(f	>=:	> r	eturn)	a			f	a
		f	>=:	> r	eturn				f	
			我时常	在想,	"朝三暮	四"是	个贬	义词吗	?	

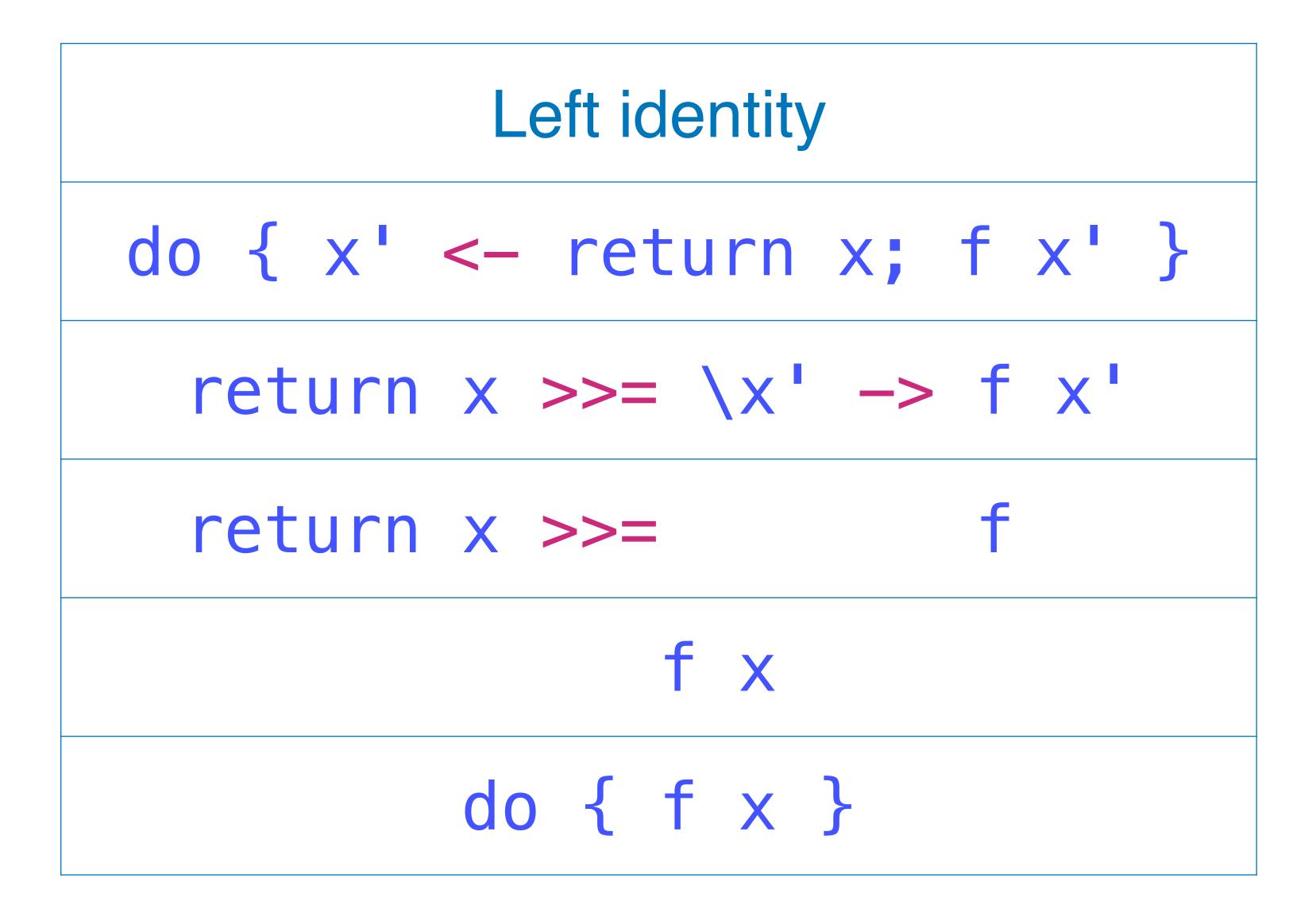
Monad Laws: Another Form

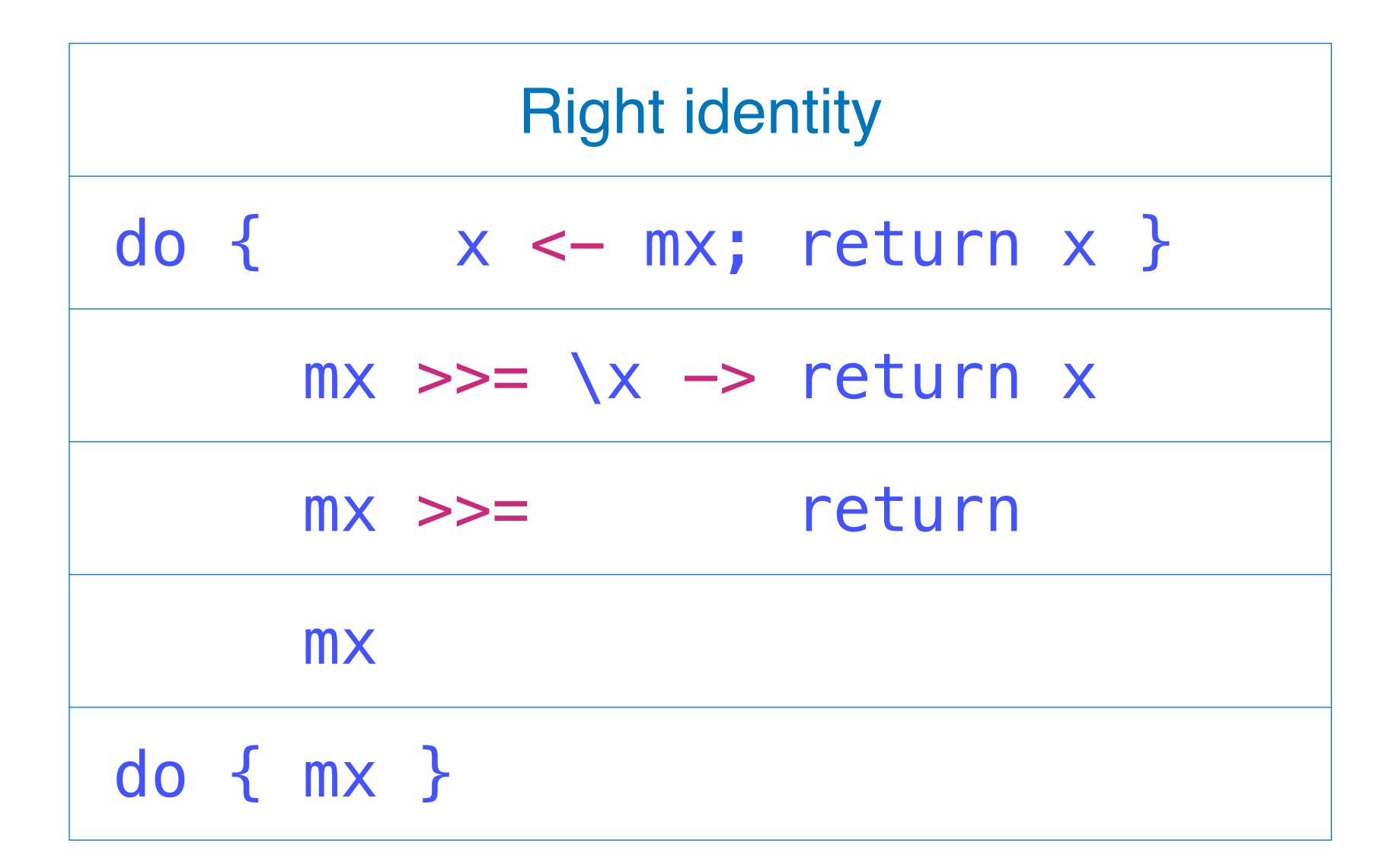
— The monad—composition operator -- defined in Control.Monad (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c) $f \gg g = \langle x - f x \rangle g$ mb >>= g) >>= f a >>= g) >>= (f a >>= g) >>= $(\x -> f x >>= g) a >>=$ Assoc (f >=> g) a >>= (X -> (f >=> g) X >>=>=> g) f >=> f >=> g) >=>

	whe
return :: a -> m a	
return = pure	
(>>=) :: m a -> (a -> m b)	->

h		=		mb)	>>=	(\x	->	g	X	>>=	h
h		=		f	а	>>=	(\x	->	g	X	>>=	h
h		=		f	а	>>=	(g		>=>	h
h		=		f	а	>>=	(g		>=>	h
h		=		f	а	>>=	(g		>=>	h
h)	а	=	(∖x ->	f	X	>>=	(g		>=>	h
h)	а	=	(f		>=>	(g		>=>	h
h		=		f		>=>	(g		>=>	h







Associativity
do { y <- do { x <- mx; f x }; g y }
do { x <- mx; f x } >>= \y -> g y
$(mx >>= \langle x -> f x \rangle >>= \langle y -> g y$
(mx >>= f) >>= g
mx >>=(x -> f x >>= g)
<pre>do { x <- mx; do { y <- f x; g y} }</pre>
do { x <- mx; y <- f x; g y }

skip_and_get = do unused <- getLine</pre> line <- getLine return line

Right identity

skip_and_get = do unused <- getLine</pre> getLine

main = do answer <- skip_and_get putStrLn answer

inlining

main = do answer <- do { unused <- getLine;</pre>

putStrLn answer

- Associativity
- main = do unused <- getLine</pre>
 - answer <- getLine
 - putStrLn answer

getLine }

这些law根本不是什么约束 而是天然就应该存在的

Monadic computations have results. This is reflected in the types. Given a monad M, a value of type M t is a computation resulting in a value of type t.

and produces that result. return :: (Monad m) => a -> m a

- For any value, there is a computation which "does nothing",

- Given a pair of computations x and y, one can form the computation x >> y, which intuitively "runs" the computation x, throws away its result, then runs y returning its result. (>>) :: (Monad m) => m a -> m b -> m b
- Further, we're allowed to use the result of the first computation to decide "what to do next", rather than just throwing it away.
 - ▶ (>>=) :: (Monad m) => m a -> (a -> m b) -> m b
 - x >>= f: a computation which runs x, then applies f to its result, getting a computation which it then runs.

main :: IO () main = getLine >>= putStrLn main :: IO () main = putStrLn "Enter a line of text:"

main = do putStrLn "Enter a line of text:" x <- getLine putStrLn (reverse x)

- >> getLine >>= $x \rightarrow$ putStrLn (reverse x)
- Because computations are typically going to be built up from long chains of >> and >>=, in Haskell, we have some syntax-sugar, called do-notation

The basic mechanical translation for the do-notation:

do { x } = x
<pre>do { x ; <stmts =="" x="">> do { <</stmts></pre>
<pre>do { v <- x ; < = x >>= \v -></pre>
<pre>do { let <decls <decls="" =="" let=""></decls></pre>

- 3> } stmts> }
- stmts> }
- do { <stmts> }
- s> ; <stmts> }
- in do { <stmts> }

- This gives monadic computations a bit of an imperative feel.
- But it's important to remember that the monad in question gets to decide what the combination means, and so some unusual forms of control flow might actually occur.
- In some monads (like parsers, or the list monad), "backtracking" may occur, and in others, even more exotic forms of control might show up.

Monads as computation Some examples from Control.Monad

A function which takes a list of computations of the same type, and builds from them a computation which will run each in turn and produce a list of the results.

sequence :: (Monad m) => [m a]
sequence [] = return []
sequence (x:xs) = x >>= \v ->

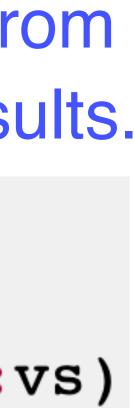
- sequence :: (Monad m) => [m
- sequence [] = return []
- sequence (x:xs) = do v <- x</pre>

vs <- s

return

main = sequence [getLine,

<mark>-></mark> m [a]	
sequence xs >>= \vs -> return	(v:
a] -> m [a]	
sequence xs (v:vs)	
getLine] >>= print	



Monads as computation Some examples from Control. Monad

- **forM ::** (Monad m) => [a] -> (a -> m b) -> m [b]
- forM xs f = sequence (map f xs)
- main = forM [1..10] \$ \x -> do putStr "Looping: " print x
- simply throw the results away as they run each of the actions.
 - sequence :: (Monad m) => [m a] -> m ()
 - sequence [] = return ()
 - sequence (x:xs) = x >> sequence xs
 - forM :: (Monad m) => [a] -> (a -> m b) -> m ()forM xs f = sequence (map f xs)

There are variants of sequence and forM, called sequence and forM_, which

Monads as computation Some examples from Control.Monad

when p x = if p then x else return ()

- Sometimes we only want a computation to happen when a given condition is true.
 - when :: (Monad m) => Bool \rightarrow m () \rightarrow m ()

Define an instance of the Functor class for the following type of binary trees that have data in their nodes:

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Show)

instance Functor Tree where -- fmap :: $(a \rightarrow b) \rightarrow Tree a \rightarrow Tree b$

Define an instance of the Functor class for the following type of binary trees that have data in their nodes:

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving (Show)

instance Functor Tree where -- fmap :: $(a \rightarrow b) \rightarrow Tree a \rightarrow Tree b$ fmap g Leaf = Leaf

fmap g (Node l x r) = Node (fmap g l) (g x) (fmap g r)

Complete the following instance declaration to make the partially-applied function type (->) a into a functor:

instance Functor ((->) a) where -- fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$

Complete the following instance declaration to make the partially-applied function type (->) a into a functor:

instance Functor ((->) a) where -- fmap :: (a -> b) -> f a -> f b -- fmap :: (b -> c) -> f b -> f c

Complete the following instance declaration to make the partially-applied function type (->) a into a functor:

instance Functor ((->) a) where -- fmap :: (a -> b) -> f a -> f b -- fmap :: (b -> c) -> f b -> f c -- fmap :: (b -> c) -> (->) a b -> (->) a c

Complete the following instance declaration to make the partially-applied function type (->) a into a functor:

instance Functor ((->) a) where -- fmap :: (a -> b) -> f a -> f b -- fmap :: (b -> c) -> f b -> f c -- fmap :: (b -> c) -> (->) a b -> (->) a c -- fmap :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$

如果一个东西可以被定义为Functor的实例,那么,只有一种fmap的定义方式

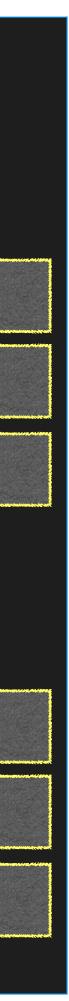
Complete the following instance declaration to make the partially-applied function type (->) a into a functor:

instance Functor ((->) a) where -- fmap :: (a -> b) -> f a -> f b -- fmap :: (b -> c) -> f b -> f c -- fmap :: (b -> c) -> (->) a b -> (->) a c -- fmap :: (b -> c) -> (a -> b) -> (a -> c) fmap = (

如果一个东西可以被定义为Functor的实例,那么,只有一种fmap的定义方式

instance Applicative ((->) a) where -- pure :: a -> f a

-- (<*>) :: f (a -> b) -> f a -> f b



instance Applicative ((->) a) where -- pure :: a -> f a -- pure :: $b \rightarrow f b$

-- (<*>) :: f (a -> b) -> f a -> f b -- (<*>) :: f (b -> c) -> f b -> f c

instance Applicative ((->) a) where -- pure :: $a \rightarrow f a$ -- pure :: $b \rightarrow f b$ -- pure :: $b \rightarrow a \rightarrow b$

-- (<*>) :: f (a -> b) -> f a -> f b -- (<*>) :: f (b -> c) -> f b -> f c

-- (< *>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

instance Applicative ((->) a) where -- pure :: a -> f a -- pure :: $b \rightarrow f b$ -- pure :: $b \rightarrow a \rightarrow b$ pure = const

-- (<*>) :: f (a -> b) -> f a -> f b -- (<*>) :: f (b -> c) -> f b -> f c

-- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

instance Applicative ((->) a) where -- pure :: a -> f a -- pure :: $b \rightarrow f b$ -- pure :: $b \rightarrow a \rightarrow b$ pure = const

-- (<*>) :: f (a -> b) -> f a -> f b -- (<*>) :: f (b -> c) -> f b -> f c $g \iff h = \langle x \rightarrow g x \$

-- (<*>) :: (a -> b -> c) -> (a -> b) -> (a -> c)

12-1 Define an instance of the Monad class for the type (->) a.

- 12-2 Given the following type of expressions data Expr a = Var a | Val Int | Add (Expr a) (Expr a) deriving Show
 - that contain variables of some type a, show how to make this type into instances of the Functor, Applicative and
 - Monad classes. With the aid of an example, explain what the
 - >>= operator for this type does.

第10章: Monads and More

Adapted from Graham's Lecture slides

